
Automated Software Synthesis

for Streaming Applications on Embedded Manycore Processors

By

MATIN HASHEMI

B.S. (Sharif University of Technology) 2005
M.S. (University of California, Davis) 2008

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Soheil Ghiasi, Chair

Venkatesh Akella

Bevan Baas

Committee in Charge

2011

-i-

Abstract

Stream applications are characterized by the requirement to process a virtually infinite

sequence of data items. They appear in many areas including communication, networking,

multimedia and cryptography. Embedded manycore systems, currently in the range of

hundreds of cores, have shown a tremendous potential in achieving high throughput and

low power consumption for such applications.

The focus of this dissertation is on automated synthesis of parallel software for stream

applications on embedded manycore systems. Automated software synthesis significantly

reduces the development and debug time. The vision is to enable seamless and efficient

transformation from a higher-order specification of the stream application (e.g., dataflow

graph) to parallel software code (e.g., multiple .C files) for a given target manycore system.

This automated process involves many steps that are being actively researched, including

workload estimation of tasks (actors) in the dataflow graph, allocation of tasks to processors,

scheduling of tasks for execution on the processors, binding of processors to physical cores

on the chip, binding of communications to physical channels on the chip, generation of the

parallel software code, backend code optimization and estimation of throughput.

This dissertation improves on the state-of-the-art by making the following contribu-

tions. First, a versatile task allocation algorithm for pipelined execution is proposed that

is provably-efficient and can be configured to target platforms with different underlying

architectures. Second, a throughput estimation method is introduced that has acceptable

accuracy, high scalability with respect to the number of cores, and a high degree of freedom

in targeting platforms with different underlying onchip networks. Third, a task scheduling

algorithm is proposed, based on iteration overlapping techniques, which explores the trade-

off between throughput and memory requirements for manycore platforms with and without

FIFO-based onchip communication channels. Finally, to increase the scalability of appli-

cation throughput with respect to the number of cores, a malleable dataflow specification

model is proposed.

-ii-

Acknowledgments

I would like to express deep appreciation for my current and previous teachers, men-

tors and advisers whom I learned a lot form. In specific, I would like to wholeheartedly

thank Professor Soheil Ghiasi, my PhD adviser, for his help, support and guidance dur-

ing the period of my graduate studies at UC Davis. Many thanks to UC Davis faculty for

teaching informative courses, and specially Professor Venkatesh Akella and Professor Bevan

Baas who also improved this work with their thoughtful comments. I would like to thank

the ECE department staff specially Renee Kuehnau and Lance Halsted for their passion-

ate work and supporting of students. The credit for this work partially goes to Po-Kuan

Huang, Adam Harbour, Mohammad Hossein Foroozannejad, Lin Chen, Christoph Etzel,

Houshmand Shiranimehr, Bin Liu, Mehrdad Afshari and Volodymyr Khibin.

-iii-

Contents

Abstract ii

Acknowledgments iii

Chapter 1. Introduction 1

Chapter 2. Background 4

2.1. Manycore Systems 4

2.2. Dataflow Model 5

2.3. Software Synthesis 7

Chapter 3. Task Assignment Techniques for Pipelined Execution of Stream Programs 16

3.1. Terms and Definitions 17

3.2. Attribute Properties and Transformations 20

3.3. Versatile Task Assignment via Graph Partitioning 23

3.4. Approximation Method 31

3.5. Practical Extensions 35

3.6. Empirical Evaluation 40

3.7. Related Work and Chapter Summary 50

Chapter 4. Scalable Estimation of Application Throughput on Manycore Platforms 52

4.1. SEAM: Sequential Execution Abstraction Model 53

4.2. Empirical Evaluation 55

4.3. Related Work and Chapter Summary 58

Chapter 5. Throughput-Memory Tradeoff via Overlapping Application Iterations 60

5.1. Preliminaries and Definitions 61

5.2. Iteration Overlapping 66

5.3. Throughput-Memory Tradeoff 75

-iv-

5.4. Empirical Evaluation 81

5.5. Related Work and Chapter Summary 82

Chapter 6. Throughput Scaling via Malleable Specification 85

6.1. Motivating Example 86

6.2. FORMLESS: A Malleable Dataflow Model 88

6.3. Exploration of Forming Parameter Space 91

6.4. Empirical Evaluation 95

6.5. Related Work and Chapter Summary 109

Chapter 7. Conclusion and Future Work 110

Bibliography 114

Appendix A. Benchmark Applications 123

-v-

1

CHAPTER 1

Introduction

Streaming applications are characterized by the requirement to process a virtually in-

finite sequence of data items [LP95]. The main quality metric in the streaming domain

is throughput, the rate at which data items are processed [GGS+06]. Such applications

are becoming increasingly important and widespread. They appear in many areas ranging

from communications in embedded sensor nodes, to multimedia and networking in desktops

computers, to high-end server applications such as cryptography, hyperspectral imaging and

cellular base stations [dK02, MKWS07, TA10]. Because of abundant parallelism and

predictable data accesses, they are capable of being efficiently executed on manycore systems

[GTA06, AED07].

Manycore systems consist of a large number of processor cores interconnected together

and behaving as a massively parallel computer system [ABC+06, Bor07]. Performance is

envisioned to scale mainly through systemwide coarse-grain parallelism. Complicated con-

trol and data dependency resolving hardware are likely to be removed in order to open more

room for larger number of cores [BHH+07, AL07]. While mainstream general purpose

processors such as Intel Xeon [SDS+11] are currently in the range of ten cores, embedded

manycore systems such as Cisco CRS [Eat05], PicoArray [PTD+06], TILE64 [BEA+08]

and AsAP [TCM+09] are already in the range of hundreds of cores (Figure 1.1).

Manycore systems have shown a tremendous potential in achieving high throughput

and low power consumption for embedded streaming applications [XB08, Pul08, TB10].

Despite this potential, however, the process of stream application development, and embed-

ded application development in general, is largely ad-hoc today [SGM+05, Lee06, HS06].

Presently, the practitioners have to settle for slow and costly development procedures, which

are error-prone and yield unportable software [Lee05]. Many researchers are working to

develop a formal science to pave the way to systematic and high-confidence development of

2

SEAforthAs AP
O c te on 2V e g a 1

U ltra SP AR C T 3

P ow e r7 ,X e on

C e ll U ltra SP AR C T 2

R AW

C ore 2 Q u a dX b ox 3 6 0

X e on C ore D u o

P ow e r4

P e n tiu m 4

T IL E-G x

V e g a 3

T IL E6 4

Am b ric 2 0 4 5

As AP 2

p ic oC hip 2 0 2
Cisco CRS

.

1

2

 4

 8

 16

 32

 64

 128

 256

 512

. '00 '01 '02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12

Release Year

N
u

m
b

e
r
 o

f
C

o
r
e
s

Figure 1.1. Current trend in the microprocessor design is to increase the
number of cores.

embedded applications [SGM+05, Mee06]. As a step towards productive stream applica-

tion development, we focus on automated software synthesis from high-level specifications.

Automated software synthesis significantly reduces the development and debug time. The

vision is to enable seamless and efficient transformation from a higher-order specification of

the stream application to parallel software code (e.g., multiple .C files) for a given target

manycore system.

Thread-based specifications often lead to unreliable software [SL05, Lee06], mainly

because concurrency constructs in Von Neumann languages introduce nondeterminism into

programs [Wen75]. Resolving issues, such as deadlocks, in a flawed multi-threaded program

is time-consuming and often requires runtime monitoring [JPSN09, BYLN09]. Dataflow-

based high-level specifications, however, address the scalability and productivity issues of

parallel threads [TKA02, Lee06]. In this model, the streaming application is described

as a set of explicitly-parallel communicating tasks (actors). The rate of communications

among the tasks are often known or predictable in the streaming domain [LM87a, TKA02,

TKS+05]. Hence, dataflow specifications provide a solid ground for reliable and productive

application development through compile-time analysis and optimization algorithms.

In recent years, a number of research groups have worked on automated stream soft-

ware synthesis from dataflow models to parallel platforms [GTA06, SGB08, HCK+09].

Languages such as StreamIt [TKA02] have been developed specifically for this purpose.

3

In order to automatically realize an application software, a sequence of refinement stages

have to be carried out to bridge the gap between high-level dataflow specifications and ap-

plication implementation. Examples include allocation and scheduling of the tasks on the

processors. Chapter 2 presents an overview of different steps normally involved in stream

software synthesis from dataflow models to manycore platforms.

The major contribution of this dissertation is presented in Chapters 3 to 6. Chapter 3

presents a versatile dual-processor task assignment algorithm that is provably-efficient and

can be easily configured to target platforms with different underlying architectures, and

also, a heuristic task assignment method for pipelined architectures. Chapter 4 presents a

manycore performance estimation method with acceptable accuracy, high scalability with

respect to the number of processors, and high degree of freedom in targeting platforms with

different underlying onchip network architectures. Chapter 5 presents iteration overlapping

which is a technique in adjusting the execution order of tasks, and is closely related to

software pipelining. It greatly improves the scalability of throughput with respect to the

number of processors by providing an adjustable knob in trading memory for more through-

put. Chapter 6 presents a new dataflow model for specifying stream applications. Gaining

insight from our previous works, we concluded that in addition to efficient optimization

algorithms, malleable high-level specification models are required in order to achieve high

scalability and portability with respect to the number of processors across a wide range

of platforms. And finally Chapter 7 concludes this dissertation by presenting an overall

summary of the lessons learned and possible directions for future work.

4

CHAPTER 2

Background

Right abstractions are the key in quality software synthesis in the embedded domain

[PBSV+06]. Sections 2.1 and 2.2 present an overview of the abstract models that we used

for the manycore platform and the streaming application specification. Note that in our

empirical evaluations, the automatically synthesized codes are compiled and executed on

the actual target hardware platform. Section 2.3 presents the optimization steps involved

in automated software synthesis from dataflow models to manycore platforms.

2.1. Manycore Systems

A traditional parallel processing platform is composed of memory units, processor chips

and their interconnection network. A manycore system, however, is fabricated entirely in

one chip with the exception of memory which may or may not be integrated on the chip.

Similar to the traditional platforms, manycore systems can be classified as shared-memory

or distributed-memory. All processor cores have access to the same memory in a shared-

memory manycore system, while in a distributed-memory system, the cores can only access

their own memory.

The processor cores may cooperate in processing the same data, in which case, locks or

similar mechanisms are required for synchronization. This approach is common in thread-

based programming (see Section 2.2). Alternatively, the cores may communicate by sending

and receiving messages, which is known as the message passing approach.

We target execution platforms whose abstract model exposed to the software synthesis

process can be viewed as a distributed-memory manycore system in which the processor

cores communicate by sending and receiving messages through point-to-point unidirectional

FIFO channels. Figure 2.2.A on page 8 illustrates an example system with 4 processor cores

in which neighbor cores are connected through FIFO channels. Many existing manycores

such as AsAP [TCM+08] and Tilera [BEA+08] conform to this abstraction. FPGA-based

systems can also implement the above model through soft processor cores such as Microblaze

2.2. DATAFLOW MODEL 5

[Mic] or Nios [Nio]. The model is reasonably accurate at high-level for other platforms

that implement the abstract view using different underlying architectures.

Systems with shared memory, such as multicore Intel Xeon [RTM+09], can be pro-

grammed to implement the virtual directed links, for example, with a virtual FIFO as

an array in the shared memory space. Systems with on-chip networks, such as IBM Cell

[KDH+05], can implement the virtual directed links with assistance of system software

for buffering and reordering of packets at processors. Note that the implemented commu-

nication mechanism has to deliver messages in the order they are sent. Message delivery

in deterministic order, e.g. in-order delivery, is required for correct realization of statically

scheduled applications.

Our model is a multiple-instruction multiple-data (MIMD) architecture which is con-

ceptually different from a single-instruction multiple-data (SIMD) architecture. Normally,

GPU systems are viewed as SIMD machines to parallelize execution of thousands of threads

which work on different sections of the data [GLGN+08]. However, today’s GPU systems

are not entirely SIMD. For example, Nvidia Fermi architecture [WKP11] offers up to 512

cores, organized in 16 stream multiprocessor (SM) blocks each with 32 SIMD cores. Inside a

block all cores must run the same code, but different blocks may run different codes. Cores

located in different blocks may only communicate through the main memory. Therefore,

one may view each SM block as one core capable of executing multiple threads of the same

task but on different data [HCW+10].

Throughout this manuscript, P denotes the total number of processor cores, pk denotes

the k’th processor (1 ≤ k ≤ P), and f(k, k ′) denotes the FIFO channel from pk to pk′ .

2.2. Dataflow Model

Let us briefly discuss the problems associated with thread-based models before explain-

ing the dataflow model. When two threads try to access and modify a shared object, e.g.,

memory, the possible data race may result in corrupted values. Unfortunately, current syn-

chronization solutions, e.g., locks, have a fundamental problem. They are not composable,

meaning that combination of two correct lock-based codes does not necessarily result in a

race-free code. In addition, locks may result in deadlock [SL05]. Multi-threading has been

originally designed for server applications which naturally show process-level parallelism,

2.2. DATAFLOW MODEL 6

while some desktop and embedded applications have fine-grained parallelism, complicated

interactions, and pointer-based data structures which make them hard to parallelize with

threads [SL05]. A number of leading experts believe that thread-based application develop-

ment in general, is not a productive and reliable method of developing concurrent software

[Lee06]. One reason is that concurrency constructs in Von Neumann languages introduce

nondeterminism into programs [Wen75].

Dataflow models address the scalability and productivity issues of parallel threads

[Lee06]. Here, the streaming application is described as a set of explicitly-parallel commu-

nicating tasks (actors). Tasks are atomic, i.e., their corresponding computation is specified

in sequential semantics, and hence, intra-task parallelism is not exploited.

Synchronous dataflow (SDF) is a special type of dataflow in which tasks’ data rates are

specified statically [LM87a]. SDF-compliant kernels are at the heart of many streaming

applications [LM87a, TKA02, GB04] and form the focus of our work. In the SDF model,

a task is a tuple

(2.1) (In,Out,H)

where In ⊆ InputPorts is the set of input ports, Out ⊆ Outputports is the set of output

ports, and H denotes the transformation function of the task. Ports = InputPorts ∪

Outputports, and InputPorts ∩ Outputports = ∅. Each port has a statically-defined data

rate, which is the mapping

(2.2) rate : Ports → N

The application is modeled as a directed graph G(V,E), known as task graph, where

vertices v ∈ V represent tasks, and directed edges e ∈ E ⊂ Ports2 represent data communi-

cation channels. Each port is connected to exactly one channel, and each channel connects

an output port of some task to an input port of another task.

A task can be executed (fired) upon availability of sufficient data on all its input ports.

Firing of a task consumes data from its input ports, and produces data on its output ports.

In streaming applications, the execution is meant to continue for infinite number of rounds.

2.3. SOFTWARE SYNTHESIS 7

.C
Files

Manycore

S im u lation

Application
Model

C od e

G eneration

P roces s or

A s s ig nm ent

T as k

A s s ig nm ent

T as k

S ch ed u ling

Manycore
Model

W ork load

E s tim ation

S D F G rap h

A nalys is

BinaryC om p iler

e.g ., g cc

Manycore

P latform

Attributes

(B) (C)

(D)
(A)

Figure 2.1. The big picture of software synthesis based on given appli-
cation and target manycore models. A) SDF graph analysis and workload
estimation steps provide the required information for B) automated synthe-
size of parallel software modules, which can be subsequently C) compiled,
and then D) executed on the target manycore platform.

Figure 2.2.B on page 8 illustrates an example SDF model for a toy streaming application

that calculates the Fourier transform of a filtered data and subsequently sort the result. The

sort is performed by splitting the data in half, sorting each piece with quicksort algorithm

and finally merging the two sorted pieces into the final sorted array using the well-known

mergesort algorithm [CLRS01b].

2.3. Software Synthesis

Given the abstract model of a target manycore architecture and the SDF graph model

of an streaming application, parallel software modules are automatically synthesized. As an

intentional result of the architecture and application models, synthesized software modules

need to directly send and receive messages to synchronize.

The main objective of software synthesis is to maximize throughput which is an im-

portant quality metric in the streaming application domain. Other optimization objectives

and/or constraints include, but not limited to, judicious use of memory and communication

resources on chip.

As shown in Figure 2.1.B, the software synthesis procedure involves several key steps

including task assignment, task scheduling, processor assignment and code generation. In

order to produce high quality code, such steps require a number of attributes for vertices

(tasks) and edges (channels) of the SDF graph. As shown in Figure 2.1.A, SDF graph

analysis and workload estimation steps provide this information. Once the parallel software

2.3. SOFTWARE SYNTHESIS 8

float yt[16],zt[16] p4/c o r e 4
while(1)
read(yt[1:16],core3)
read(zt[1:16],core2)
Ht(yt[1:16],zt[1:16],output)

float xy[16],yt[16] p2/c o r e 3
while(1)
read(xy[1:16],core1)
Hy(xy[1:16],yt[1:16])
write(yt[1:16],core4)

float xz[16],zt[16] p3/c o r e 2
while(1)
read(xz[1:16],core1)
Hz(xz[1:16],zt[1:16])
write(zt[1:16],core4)

float vu[32],ux[32],xy[16],xz[16] p1/c o r e 1
while(1)
for i=1:32 Hv(input,vu[i])
Hu(vu[1:32],ux[1:32])
for i=1:16 Hx(ux[2i-1:2i],xy[i],xz[i])
write(xy[1:16],core3)
write(xz[1:16],core2)

(A)

Core 1

Core 3

Core 2

Core 4

(B) (C) (D)

(F)

p1: 32v u 16 x w rite(x y) w rite(x z)
p2: rea d (x y) y w rite(y t)
p3: rea d (x z) z w rite(z t)
p4: rea d (y t) rea d (z t) t

p1(lo g ic a l
pr o c e s s o r
1)

p2

m e r g e

s c a tte r d a ta

y z

t

x

v

q uic k s o r t

lo w -pa s s filte r
(m o vin g a vg .)

1

1
32

1 1
16

16
16 16

32

16

16

x

u

v

y z

t

(E)

w r ite (xy)

r e a d (xy)

(G)
p1

p2

p3

p4

(H)

u F o ur ie r
tr a n s fo r m

32
2

y z

t

x

v

n (v u)= 32

16

32

16

u

32

r (v)= 32

1

16

16 16

32

1 1

1

y z

t

x

v

u

p3

p4

Figure 2.2. Example: A) Sample system with 4 processor cores. B) Sample
SDF graph for a toy streaming application. C) SDF graph analysis. D)
Task assignment. E) Inserting write and read tasks. F) Task scheduling. G)
Processor assignment. H) Code generation.

modules are synthesized they can be executed on the target manycore platform (Figure

2.1.D), or alternatively simulated with a manycore simulator. To execute the application,

each software module, e.g., C code, should be compiled to a binary code using the target

native compiler, e.g., gcc (Figure 2.1.C).

The software synthesis steps in Figure 2.1 are briefly introduced here using a simple

example. Figure 2.2.A illustrates an example target platform with 4 processor cores. Figure

2.2.B illustrates a toy streaming application that calculates the Fourier transform of a

filtered data and subsequently sort the result. The sort is performed by splitting the data

in half, sorting each piece with quicksort algorithm and finally merging the two sorted

pieces into the final sorted array using the well-known mergesort algorithm as described

in [CLRS01b]. The parallel software modules shown in Figure 2.2.H are produced by

performing the following steps.

2.3.1. SDF Graph Analysis. As mentioned above, SDF graph analysis and workload

estimation steps provide the graph attributes (Figure 2.1.A). Reader may skip the discussion

on the SDF graph attributes and go directly to section 2.3.3 on page 11. The first attribute

2.3. SOFTWARE SYNTHESIS 9

is firing repetition of tasks. It is defined as the number of times that a task v ∈ V is fired

in every round of the periodic application execution, and is denoted with r(v). Formally

(2.3) r : V → N

Channels can have different production and consumption rates. For example in Figure

2.2.B, channel vu has a production rate of 1 but a consumption rate of 32. As a result, the

firing repetition r(v) should be different for different tasks. In an SDF graph, r(v) can be

calculated solely based on the production and consumption rates as described in [LM87b]

in order to satisfy the following condition

(2.4) ∀e(v, u) ∈ E : r(v) × rate(v.port) = r(u) × rate(u.port)

where v.port and u.port denote the two ports that are connected via channel e. For example

as shown in Figure 2.2.C, the rates are assigned such that r(v) × 1 = r(u) × 32. In this

example, task v is fired 32 times, task x, 16 times, and all other tasks only once in each

round of the periodic execution.

The second attribute is communication volume of channels e(v, u) ∈ E. It is defined as

the total number of tokens transfered from the producer task v to the consumer task u in

every round of the periodic application execution. The communication volume of channel

e is denoted with n(e) and can be determined based on the task firing repetitions as the

following

(2.5)
n : E → N

∀e(v, u) ∈ E : n(e) = r(v) × rate(v.port)

For example as shown in Figure 2.2.C, the communication volume of channel vu is equal

to n(vu) = 32.

2.3.2. Workload Estimation. Another attribute is the workload of a task v ∈ V on

processor pk, which is denoted by wk(v). Formally,

(2.6)
wk : V → N (k ∈ [1, P])

wk(v) = r(v) × latency

2.3. SOFTWARE SYNTHESIS 10

where the latency denotes the execution latency of one firing of task v on processor pk. The

workload is inherently input-dependent, due to the strong dependency of the tasks’ control

flow (the transfer function H) with their input data. For example, the execution latency of

the quicksort algorithm on a list would partially depend on the ordering of the numbers in

the list. Other factors affecting the workload include the optimizations performed during

compilation of synthesized software modules, and also, the existence of non-deterministic

architecture units such as cache.

The accuracy of task workload estimates is crucial to the quality of software synthesis

process specially the task assignment step. Therefore, the estimation method should be

carefully designed based on a specific situation. Details of the workload estimation method

used in this work are discussed in later chapters. In general, there are two main approaches

to workload estimation, namely profiling and code analysis. Profiling-based approached

measure the execution latency of tasks at runtime. Therefore, no analysis of the code is

required, and also, the effects of compiler optimizations and non-deterministic hardware

units such as cache and processor pipeline are better captured. Code analysis, however,

can be easily automated to quickly analyze the workload of tasks at compile time without

requiring to execute the tasks on the target platform [Sar89, WEE+08]. Unpredictable

effects of cache is often higher than the effect of processor pipeline or compiler optimizations.

Scratchpad memories for embedded systems have been proposed to replace cache in order

to improve predictability and energy consumption [UDB06, NDB09].

The last attribute is memory requirement of tasks and channels which is estimated as

well. mk(v) refers to the amount of memory required by processor pk for instructions of

a task v ∈ V . For example in Figure 2.2, mk(y) is the memory footprint of the quicksort

algorithm in processor pk. Similarly, mk(e) refers to the amount of memory required to

allocate the array which stores messages of a channel e ∈ E. For example as shown in

Attribute Notation Possible Unit

firing repetition r(v) -

number of tokens n(e) -

computation workload wk(v) msec.

required memory mk(v),mk(e) KB

Figure 2.3. The attributes of vertices (tasks) and edges (channels) of an
SDF graph G(V,E), which is provided by the steps shown in Figure 2.1.A

2.3. SOFTWARE SYNTHESIS 11

Figure 2.2.H, m1(vu) is equal to the amount of memory allocated for tokens of channel

vu, i.e., m1(vu) = n(vu) × sizeof(float) = 32 × 4. Estimating the memory requirement is

often simple, specially for the embedded streaming applications because they normally do

not dynamically allocate data structures of unpredictable size. Figure 2.3 summarizes the

above attributes for future reference.

2.3.3. Task Assignment. Every task should be assigned to a processor for execution.

At this point, the physical location of processors on the chip is ignored [SK03]. In other

words, tasks are assigned to logical processors in this step, and later in the processor as-

signment step, logical processors are assigned to the physical processors on the chip. Figure

2.2.D illustrates an example task assignment in which tasks u, v and x are assigned to

logical processor p1, y to p2, z to p3 and t to p4.

When the producer and consumer tasks of a channel are assigned to different processors,

the tokens on this channel should be transfered using the platform FIFO channels. This

is modeled by adding new write and read tasks to the graph. For example as shown in

Figure 2.2.E, for channel xy from p1 to p2, new write and read tasks are added to the

graph. Adding the new communication tasks greatly impacts the degree of freedom for task

scheduling (more details on this subject in Section 2.3.4 on the next page).

The main objective of task assignment is to judiciously distribute the workload among

the processors in order to maximize throughput. This requires the workload attributes

wk(v), i.e., the workload of task v if it is allocated on processor pk. Task assignment is sim-

pler for manycore systems with identical cores [G+02], while in heterogeneous manycore

systems the difference among the cores should also be considered for efficient implemen-

tation [VR99, SK03, MK08]. Depending on the target architecture, task assignment

may involve additional objectives and/or constraints. For example, minimization of inter-

processor communication overhead is often a second optimization objective specially since

it normally affects the throughput [SBGC07, HG09]. This requires the use of attributes

n(e). Another example is when onchip memory is limited, in which case, the memory re-

quirement of each processor can be added as a constraint. This requires the use of attributes

m(v) and m(e). If the required memory exceeds the available local memory the implemen-

tation is infeasible, and hence, the estimated performance gain through workload balancing

2.3. SOFTWARE SYNTHESIS 12

is irrelevant. However, most task assignment approaches focus mainly on workload in order

to increase the throughput and consider the memory limits only as a second constraint if at

all. This is because there are often a number of ways to spill data in and out of the limited

local memory [UDB06, HCK+09], but note that such approaches often work only for the

data memory and not the instruction memory.

Task assignment for a manycore target with P processors can be formulated as a graph

partitioning problem in which the graph should be partitioned into P subgraphs. An

example partitioning objective is to evenly distribute weights of the vertices (task work-

loads) while minimizing weight of cut edges (communications) [MK08, HG10]. Other

approaches include ILP-based task assignment formulations which normally provide higher

degree of freedom in defining a heterogeneous architecture but may take longer to execute

[HCK+09]. Heuristic task assignment methods often sort the tasks first and allocate them

on the processors in that order. The criteria for sort is normally either the task workloads

alone or a combincation of workloads, communication overheads and memory requirement

[G+02, SBGC07].

2.3.4. Task Scheduling. Assuming each core executes only one thread, which is the

case in our hardware model, tasks that are assigned to the same processor should be ordered

for sequential execution on that processor. In SDF model, the production and consump-

tion rates are known at compile-time and hence such ordering can be determined statically

[LM87b]. Figure 2.2.F shows a valid schedule for each of the logical processors in our ex-

ample. Note that the execution is periodic, for example the schedule [read(xy), y, write(yt)]

for processor p2 means the following sequence repeats periodically. The data on channel xy

is first read from FIFO, task y is executed, and then the data produced on channel yt are

written to FIFO.

Communications between tasks that are assigned to different processors cause inter-

processor dependencies, and hence, scheduling of the tasks on one processor is not indepen-

dent from scheduling of the tasks on other processors. Failure to consider this effect may

result in a deadlock situation [ZL06]. Task scheduling should avoid deadlock by consider-

ing the dependency of a task in every processor with the tasks in other processors. This is

2.3. SOFTWARE SYNTHESIS 13

closely related to the effect of FIFO channels especially when cycles exist in the dataflow

graph [GGB+06, SGB08, LGX+09, PD10].

Besides deadlock avoidance, the main optimization objective of task scheduling, how-

ever, is to maximize throughput by judiciously scheduling the tasks in time. Inter-processor

dependencies should be carefully analyzed at compile-time in order to avoid idle periods

in the execution. Iteration overlapping, a.k.a. pipeline parallelism [GTA06, KM08], is a

technique that alters the task schedule by overlapping the execution of different iterations

of the streaming application in order to fill the idle gaps. This is closely related to software

pipelining where multiple iterations of a loop are overlapped [Rau94]. Insertion of new

write and read communication tasks to the task graph (Section 2.3.3) provides more room

for such optimizations because it disentangles the execution of a task from its dependent

consumers (or producers) in other processors, and it also disentangles the consumers of the

task from one another.

As opposed to task assignment where throughput and memory requirements are often

considered as separate factors, in task scheduling the two have a strong relation [BLM96,

BML99]. In other words, the schedule of tasks directly impacts both the throughput and

the memory requirement at the same time. The reason for the impact on memory is that

the local buffering requirement of a channel vary depending on how far its producer or

consumer tasks are located in the schedule of that processor, and how many times the task

executes on every iteration of the periodic execution [ZTB00, KTA03, KMB07].

Hence, memory requirement may be taken into account as a constraint when onchip

memory is limited. Note that when tasks are coarse-grain, e.g., functions, as opposed to

fine-grain, e.g., instructions, multiple calls to the function are inserted into the code in-

stead of multiple copies of the same instruction sequence. In other words, the impact of

scheduling on instruction memory is limited for coarse-grain task graphs. Data memory

requirement, however, has a strong dependency to the schedule as mentioned above. There-

fore, when onchip memory is limited, it would be a wise option to consider instruction

memory requirements during task assignment, and data memory requirements during task

scheduling.

2.3. SOFTWARE SYNTHESIS 14

2.3.5. Processor Assignment. In the task assignment step, tasks are assigned to

logical processors, and in this step which is also known as layout or processor binding, the

logical processors are assigned to physical processors on the chip [G+02, HM05]. This

approach simplifies the problem of assigning tasks to the processors by dividing it in two

sub-problems. Hence, faster and more efficient optimization methods could be designed for

each of the two steps. Processor assignment considers the effect of onchip communications

on the throughput and try to assign communicating processors as close to each other as

possible to avoid network congestion. The optimizations required in this step highly depends

on the underlying architecture of the onchip network. For example, in manycore systems

like AsAP [TCM+08] where onchip communication resources are limited sophisticated

algorithms are required to achieve a feasible and high throughput implementation.

In certain cases, task assignment may also need to be aware of the limitations in the

onchip network. For example in the first version of AsAP [YMA+06], each processor could

communicate with only its four neighbor processors. Task assignment for such platforms

should consider this limitation in grouping the tasks, or otherwise it may not be possible

for the processor assignment step to find a feasible solution.

An alternative way, however, would be to combine task assignment and processor as-

signment in one step. This is more favorable when the target manycore system has a high

degree of heterogeneity. Task assignment needs to be aware of the exact processor archi-

tecture in order to have a workload estimate of that task or its memory size constraints. If

the degree of heterogeneity is low it may still be favorable to have separate task assignment

and processor assignment steps.

2.3.6. Code Generation. Task functionalities are provided as sequential computa-

tions that are kept intact throughout the synthesis process. The software code for each

processor is synthesized by stitching together the set of tasks that are assigned to that

processor according to their schedule. For tasks that are assigned to the same processor,

inter-task communication is implemented using arrays. That is, the producer task writes its

data to an array, which is then read by the consumer task. Inter-processor communication

is implemented using the new write and read tasks inserted in the task assignment step.

Figure 2.2.H on page 8 illustrates an example.

2.3. SOFTWARE SYNTHESIS 15

Decades of effort have been put into design of efficient sequential compilers such as

gcc [BGS94]. To harness the power of optimization algorithms in sequential uni-processor

compilers, the code generation only produces a source code, e.g., C file, for each processor

core. A native compiler of the target platform can later compile this code into binary.

During the uni-processor compilation, specific I/O instructions or calls to certain OS services

or library functions may need to be inserted into the binary code to implement the inter-

processor communications.

Task workloads, task schedules, production and consumption rates and many other

attributes of the automatically synthesized software modules are known at this point. This

enables efficient deployment of source-level optimizations which otherwise would not be

possible or very difficult and inefficient. Buffer merging is a technique which reduces the

data memory requirement. Through careful analysis of the time intervals at which buffers

are alive, the source code is transformed such that allocated memory of the buffers overlap

[MB04, FHHG10, FHHG11]. In order to reduce energy consumption, workload and

scheduling information may assist automatic insertion of DVS (dynamic voltage scaling)

instructions into the code [LBDM02, IHK04, FRRJ07].

16

CHAPTER 3

Task Assignment Techniques for Pipelined Execution of

Stream Programs

The main objective of task assignment is to optimally distribute the workload among

the processors in order to maximize the application throughput. Depending on the target

architecture, task assignment may involve additional objectives and/or constraints including

but not limited to judicious use of limited onchip memory or minimization of inter-processor

communication.

In this chapter, we first present a task assignment method for heterogeneous soft dual-

processor systems. The objective is to maximize throughput, under the constraint that

generated code for a processor meets processor’s instruction and data memory size con-

straints, if needed. Given the high-degree of heterogeneity in the system, differerent ar-

chitectures are likely to impact application throughput differently. Optimal mapping of

application tasks onto processors depends on the specifics of the architectures. Ideally, one

would want to have a versatile software synthesis solution that can be parameterized to

target different configurations. Specifically, we present a formally-versatile dual-processor

task assignment algorithm whose formal properties hold for, and hence it is applicable to,

a variety of target hardware platforms with different implementation-driven objectives and

constraints. Leveraging the graph theoretical properties of applications task graphs, we

develop a provably-effective task assignment algorithm that both maximizes throughput,

and guarantees meeting instruction and data size constraints according to high-level esti-

mates. Measurement of generated code size and throughput of emulated systems validate

the effectiveness of our approach [HHG07, HG10].

Next, based on the above dual-processor algorithm, we develop a heuristic method for

pipelined execution on targets with an arbitrary number of identical processors. In other

words, we view the target platform as a chain of processors, and iteratively apply the graph

bi-partitioning method (dual-processor task assignment) to partition the task graph among

3.1. TERMS AND DEFINITIONS 17

all the processors. Throughput measurement of the generated code on emulated systems

validate the effectiveness of our approach [HG08, HG09].

3.1. Terms and Definitions

Task assignment for dual-processor platforms can be viewed as bi-partitioning of appli-

cation task graph, in which tasks in the same partition are assigned to the same processor.

A partitioning of graph G(V,E) is constructed by removal (cutting) of a subset of edges

(channels) to create two connected subgraphs G1(V1, E1) and G2(V2, E2). We use the term

cut C to refer to such cut channels. Formally

(3.1)
V1 ∪ V2 = V

E1 ∪ E2 ∪ C = E

As discussed in the previous chapter (Figure 2.3 on page 10), the task graph is annotated

with a number of attributes. Figure 3.1 shows an example task graph in which all the

attributes w1, w2, n, m1 and m2 are equal to 1, except for those shown in the figure. Later

in Section 3.5, we discuss extensions to handle other attributes, if necessary. The attributes

are naturally extended to partitions in the following manner.

Computation: The total workload of tasks, excluding the extra write and read tasks,

assigned to processor pk, i.e., in a partition Gk, is equal to1

(3.2) ‖wk(Vk)‖ =
∑

v∈Vk

wk(v)

For example in Figure 3.1, V1 = {a, b, c} and thus ‖w1(V1)‖ = w1(a) + w1(b) + w1(c) =

1 + 1 + 2 = 4.

Communication: If a channel e(u, v) is cut, tasks u and v are assigned to different

processors, and thus the corresponding communication between u and v has to pass through

the on-chip network. The term ‖n(C)‖ refers to the total number of messages transfered over

all the cut channels. In Figure 3.1, C = {bd, ce} and thus ‖n(C)‖ = n(bd)+n(ce) = 1+1 = 2.

1Throughout this manuscript, for a function f : X → N0, the term f(X) denotes the set of f(x) values for
every x, i.e., f(X) = {f(x)|x ∈ X}. For example, w(Vk) = {w(v)|v ∈ Vk}. The term ‖f(X)‖ denotes the

L1 norm of f(X) which is equal to
X

x∈X

f(x). For example, ‖w(Vk)‖ =
X

v∈Vk

w(v). The term |X| denotes the

number of elements in a set X.

3.1. TERMS AND DEFINITIONS 18

e

a

c

f

b

d

n=m
1
=m

2
=2

w
1
=2 w

1
=2

m
2
=2

cut C={bd,ce}

G1:
V1={a,b,c}
E1={ab,bc}

G2:
V2={d,e,f}
E2={de,ef}

Figure 3.1. An example task graph in which all the attributes w1, w2,
n, m1 and m2 are equal to 1, except for those shown in the figure. Cut
C = {bd, ce} divides the graph G in two partitions G1 and G2.

‖wk(Vk)‖=
∑

v∈Vk

wk(v) computation workload
assigned to processor pk

‖n(C)‖=
∑

e∈C

n(e) # of message transferred
between processor 1 and 2

‖mk(Vk)‖=
∑

v∈Vk

mk(v)

‖mk(Ek)‖=
∑

e∈Ek

mk(e)

‖mk(C)‖=
∑

e∈C

mk(c)

memory required by processor pk for:
- tasks
- inter-task intra-processor communications
- inter-processor communications

Figure 3.2. Partition attributes are natural extension of vertex and edge attributes.

Memory: Cut channels demand allocation of data memory on both processors. The

term ‖mk(C)‖ refers to the amount of data memory allocated for the cut channels on

processor pk. In Figure 3.1, ‖m1(C)‖ = m1(bd) + m1(ce) = n(bd) × sizeof(datatype) +

n(ce) × sizeof(datatype) = 1 + 1 = 2.

The rest of the channels allocate memory in only one processor. The term ‖mk(Ek)‖

refers to the total amount of memory required by processor pk for implementing intra-

processor communication, in which Ek represents the subset of channels that are allocated

to processor pk. In Figure 3.1, E1 = {ab, bc}, and thus, ‖m1(E1)‖ = m1(ab) + m1(bc) =

1+2 = 3. Similarly, the term ‖mk(Vk)‖ denotes the amount of instruction memory required

by processor pk for task set Vk. The partition attributes are summarized in Figure 3.2 for

future reference.

3.1. TERMS AND DEFINITIONS 19

3.1.1. Problem Statement. We target task graphs that contain no cycles. If a given

task graph contains a cycle, we collapse the vertices in the cycle into a single task to represent

the application as a directed acyclic graph (DAG). Such task graphs form an important

subset, because many important streaming kernels can be represented in this fashion. Hence,

we aim to assign tasks to processors such that one processor would always send and the other

would always receive message. This uni-directional flow of data intuitively suits pipelined

throughput-driven execution of streaming applications In the graph domain, this translates

to convex cuts, which refer to cuts that connect vertices in G1 to vertices in G2 (and

not the other way around). Convex cuts, which form the focus of our work in this chapter,

characterize a subset of possible task assignments. If all task assignment possibilities were to

be considered, task scheduling had to be combined with task assignment to allow evaluation

of candidate solutions.

Tasks in the partition Gk will be assigned to, and executed by processor pk, and mes-

sages on cut channels e ∈ C will be transfered between processors using the onchip network.

Hence, task assignment for dual-processors can be formally defined as the following opti-

mization problem:

(3.3)

a) minimize:

Q = F
(
‖w1(V1)‖, ‖w2(V2)‖, ‖n(C)‖

)

b) constraint:

‖m1(V1)‖ + ‖m1(E1)‖ + ‖m1(C)‖ ≤ memory of processor 1

‖m2(V2)‖ + ‖m2(E2)‖ + ‖m2(C)‖ ≤ memory of processor 2

That is, the goal is to find the cut C which, (a) maximizes throughput and, (b) meets

the processors’ memory size constraints. The cost function Q models application execution

period, which is the inverse of its throughput. The execution period depends on processor

workloads and inter-processor communication. The specific relation, however, depends on

the underlying hardware. Our goal is to devise a versatile method to handle a wide variety

of cost functions.

For example in a system with negligible interprocessor communications, it may be accu-

rate enough to estimate the execution period as Q = F (‖w1(V1)‖, ‖w2(V2)‖) = max{‖w1(V1)‖

, ‖w2(V2)‖}, because the pipeline throughput would be limited by the slowest of the two

3.2. ATTRIBUTE PROPERTIES AND TRANSFORMATIONS 20

processors. This simplified cost function promotes balancing processors’ workload, which

has been the focus of most classical task assignment schemes. As another example, assume a

sufficiently-buffered FIFO link between the two processors implements the virtual network.

A reasonable estimation function would be Q = max{‖w1(V1)‖ + α1‖n(c)‖, α2‖n(c)‖ +

‖w2(V2)‖}, where αk is the extra cycles in workload of processor pk to push (pop) one unit

of data to (from) the FIFO.

In practice, out of two solutions with identical workload distributions, the one with

smaller inter-processor communication is always preferred. Therefore, without loss of gen-

erality we assume that the cost function Q is non-descending in ‖n(c)‖.

3.2. Attribute Properties and Transformations

In this section, we exploit structural properties of task graphs to develop a transfor-

mation on the attributes, that assists us in quick evaluation of a cut. Let us assume an

imaginary attribute θ1 is assigned to both tasks (vertices) and channels (edges) in the graph

G(V,E). Our objective is to transform θ1 to a new set of attributes, θ′1, assigned only to

edges of G, such that their summation on any cut would give the summation of the original

θ1 attributes on vertices and edges in partition 1.

Let ei and eo denote the set of incoming and outgoing edges of a vertex, respectively.

Let e∗o be a randomly-selected outgoing edge. The transformed attributes θ ′
1 for outgoing

edges of a vertex are recursively defined as follows:

(3.4) ∀v ∈ V : θ′1(eo) =







∑

ei

θ′1(ei) + θ1(v) + θ1(eo) if e∗o

θ1(eo) otherwise

Figure 3.3 shows an example. Intuitively speaking, attribute transformation works

similar to gravity. The task graph can be viewed as a physical structure in which every

element has a weight, i.e., θ1(v) and θ1(e) can be viewed as the weight of vertex v and edge e,

respectively. Hence, the random selection of one outgoing edge is analogous to disconnecting

the corresponding joint in the structure. That is, every vertex stays connected to exactly

one of its outgoing edges in the physical domain. The amount of weight held by edge e

determines the value of θ′1(e). In Figure 3.3, edge ab holds θ′1(ab) = θ1(a)+θ1(ab) of weight.

Vertex b in the figure is disconnected from edge bc, and therefore, total weight of vertices a

3.2. ATTRIBUTE PROPERTIES AND TRANSFORMATIONS 21

bc

(B)

bc+ c+ ce

bc+ c+ ce+
a+ ab+ b+ bd+ d+ de+
e+ ef

e

a(A)

c

f

ab

b

0+ a+ ab= �ab

start

0+ a+ ab+ b+ bd

�ab

b

d

e

a

c

f

d

b

a+ ab+ b+ bd+
d+ de

1(e)

1(v)
�1(e)

g
ravity

Figure 3.3. A) Sample task graph with attributes θ1 for vertices and edges.
B) The task graph after transforming θ1 to θ′1.

and b and edges ab and bd is held by edge bd. Note that this joint disconnection is only an

intuitive analogy, i.e., none of the edges are actually removed or disconnected.

As expected from the gravity analogy, the transformation satisfies our objective prop-

erty. That is, the sum of θ′1 attributes on cut C is equal to the sum of θ1 attributes

on the edges and vertices of the top partition of graph, G1(V1, E1). Intuitively, the cut

edges have to hold the entire weight above them. In Figure 3.3, θ ′
1(bd) + θ′1(ce) is equal to

{θ1(a) + θ1(b) + θ1(c)} + {θ1(ab) + θ1(bc)} + {θ1(bd) + θ1(ce)}.

Lemma 3.1. The transformation propagates the attribute of an arbitrary vertex (edge)

along exactly one directed path, referred to as the propagation path, from the vertex (edge)

to the unique sink vertex.

Proof. Let a be an arbitrary vertex in the directed acyclic graph. The transformation

propagates θ1(a) along exactly one of its outgoing edges, which is selected at random. Let

b be the destination vertex of the randomly-selected outgoing edge. If b is the sink vertex,

then the lemma is proved. Otherwise, θ1(a) is propagated along exactly one of the outgoing

edges of b, and the same argument can be made iteratively. Since graph is acyclic, we will

never visit a vertex that we have visited before. The graph has finite number of vertices

and hence, the iteration will have to end by arriving at the sink vertex. Similar argument

can be made for edge attributes. �

3.2. ATTRIBUTE PROPERTIES AND TRANSFORMATIONS 22

Theorem 3.2. For a convex cut on a directed acyclic graph

(3.5)
∑

v∈V1

θ1(v)

︸ ︷︷ ︸

weight of

G1 vertices

+
∑

e∈E1

θ1(e)

︸ ︷︷ ︸

weight of

G1 edges

+
∑

e∈C

θ1(e)

︸ ︷︷ ︸

weight of

cut edges

=
∑

e∈C

θ′1(e)

︸ ︷︷ ︸

total weight

held by cut C

The theorem should be intuitive from the gravity analogy, in which the weight of every

vertex or edge in G1 is held by one and only one of the cut edges. For example in Figure

3.3, weight of vertex a (i.e., θ1(a)) is held by the cut edge bd, and not by ce. Therefore,

across all the cut edges, weight of vertices and edges in G1 are considered exactly once.

Proof. We argue that C and the propagation path of an arbitrary vertex a ∈ G1

intersect at exactly one edge. If C and the propagation path of vertex a do not intersect,

then a ∈ G1 is connected to the sink vertex via a connected path and hence, C is not a

cut. If they intersect in more than one edge, then the propagation path direction goes out

of G1 and then back into G1, which means that C is not convex. Therefore, the two edge

set intersect at exactly one edge, and hence, θ1(a) is accurately captured in θ′1 of the edge.

Similar arguments can be made for arbitrary edges in G1 or C. �

We also introduce another transformation similar to above, with the minor difference

that the gravity is replaced with a force away from (as opposed to toward) the bottom

of the graph. In other words, the graph can be temporarily held upside down. Here, we

convert θ2 attributes to a new set of θ′2 attributes assigned to the edges. Figure 3.4 shows

an example.

Theorem 3.3. Similarly we have:

(3.6)
∑

v∈V2

θ2(v)

︸ ︷︷ ︸

weight of

G2 vertices

+
∑

e∈E2

θ2(e)

︸ ︷︷ ︸

weight of

G2 edges

+
∑

e∈C

θ2(e)

︸ ︷︷ ︸

weight of

cut edges

=
∑

e∈C

θ′2(e)

︸ ︷︷ ︸

total weight

held by cut C

Proof. Construct a new graph Gr from G by reversing the direction of all edges, and

then, apply Theorem 1 to Gr. �

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 23

(B)

e

a(A)

c

f

ab

b

start

b

d c

f

d

b

0+ f+ ef= �ef

e

de0+ f+ ef+ e+ ce

f+ ef+ e+ ce+
c+ bc

de+ d+ bd

a

f+ ef+ e+ ce+ c+ bc+
de+ d+ bd + b+ ab

�ef

2(e)

2(v)
�2(e)

g
ravity

Figure 3.4. A) Sample task graph with attributes θ2 for vertices and edges.
B) The task graph after transforming θ2 to θ′2.

Corollary 3.4. By combining Theorems 3.2 and 3.3 we have

(3.7)
∑

v∈Vk

θk(v) +
∑

e∈Ek

θk(e) +
∑

e∈C

θk(e) =
∑

e∈C

θ′k(e)

which can be written as

(3.8) ‖θk(Vk)‖ + ‖θk(Ek)‖ + ‖θk(C)‖ = ‖θ′k(C)‖

for k ∈ {1, 2}.

3.3. Versatile Task Assignment via Graph Partitioning

We approach task assignment as a graph partitioning instance, and develop an algo-

rithm that is provably optimal in minimizing cost function Q, or equivalently, maximizing

pipeline throughput. The technique is versatile and can optimize a variety of cost functions

inspired by different hardware configurations. For clarity, we present our technique using

the attributes discussed in Section 3.1. Later in Section 3.5, we will present extensions to

our approach.

3.3.1. Applying Attribute Transformation. As summarized in Figure 3.2, to ob-

tain the value of partition attributes all vertices or edges in the partition have to be enumer-

ated. For example, one has to enumerate all vertices in G1 to calculate ‖w1(V1)‖. It would

be more efficient to evaluate Equation 3.3 by only processing attributes of the edges in cut

C. Here we apply the attribute transformation, and as a result, we will have a new set of

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 24

attributes (e.g., w′
1 instead of w1), which have the desired property. The transformation is

applied to the following attributes. Figure 3.5 provides a summary.

Computation: wk attributes are transformed to a new set of attributes called w ′
k. In

this case, “θ” is mapped to “w”, which means, θk(v) = wk(v), θk(e) = 0 and θ′k(e) = w′
k(e).

Based on Corollary 3.4, we have:

(3.9) ‖wk(Vk)‖ = ‖w′
k(C)‖

For example in Figure 3.6.A, we need to sum up the workload of vertices a, b and c to

calculate ‖w1(V1)‖ = w1(a)+w1(b)+w1(c) from the original graph. After the transformation

(Figure 3.6.B), we can obtain ‖w1(V1)‖ by enumerating edges bd and ce, i.e., ‖w′
1(C)‖ =

w′
1(bd) + w′

1(ce) = {w1(a) + w1(b)} + {w1(c)}. Thus, we use ‖w′
1(C)‖ instead of ‖w1(V1)‖.

Communication: Since ‖n(C)‖ =
∑

e∈C

n(e), it is already calculated by looking only at

the cut edges, and thus, we do not need to apply the transformation to attributes n.

Memory: Attributes mk are transformed to a new set of attributes called m′
k. Here,

θk(v) = mk(v), θk(e) = mk(e) and θ′k(e) = m′
k(e). Based on Corollary 3.4, we have

(3.10) ‖mk(Vk)‖ + ‖mk(Ek)‖ + ‖mk(C)‖ = ‖m′
k(C)‖

For example, the memory requirement of processor 2 is originally calculated by visiting

vertices f , e and d, and edges ef , de, bd and ce, i.e., ‖m2(V2)‖ + ‖m2(E2)‖ + ‖m2(C)‖ =

{m2(f) + m2(e) + m2(d)} + {m2(ef) + m2(de)} + {m2(bd) + m2(ce)} (Figure 3.6.A). After

the transformation, we can derive the same value from m′
2(bd) + m′

2(ce) (Figure 3.6.B).

Thus we use ‖m′
k(C)‖ instead of ‖mk(Vk)‖ + ‖mk(Ek)‖ + ‖mk(C)‖.

Following transforming the attributes, we have a new set of edge attributes, n(e), w ′
1(e),

w′
2(e), m′

1(e) and m′
2(e), that are summarized in Figure 3.5. They enable evaluation of both

the cost function and memory constraint by enumeration of the edges in cut C. Therefore,

our target task assignment problem can be cast as finding the cut in the graph, subject to

the following objective and constraints:

(3.11)

a) minimize: Q(C) = F
(
‖w′

1(C)‖, ‖w′
2(C)‖, ‖n(C)‖

)

b) constraints: ‖m′
1(C)‖ ≤ memory of processor 1

‖m′
2(C)‖ ≤ memory of processor 2

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 25

θk → θ′k Corollary 3.4 Calculation

θk(v) = wk(v)
θk(e) = 0

θ′k(e) = w′
k(e) ‖wk(Vk)‖ = ‖w′

k(C)‖
∑

e∈C

w′
k(e)

transformation not required ‖n(C)‖
∑

e∈C

n(e)

θk(v) = mk(v)
θk(e) = mk(e)

θ′k(e) = m′
k(e)

‖mk(Vk)‖ + ‖mk(Ek)‖
+‖mk(C)‖ = ‖m′

k(C)‖

∑

e∈C

m′
k(e)

Figure 3.5. Applying attribute transformation to the application task graph.

To simplify the notation, we represent the attributes in an attribute vector ~β(e) =

[w′
1(e), w

′
2(e),m

′
1(e),m

′
2(e), n(e)]. For example, β3(e) = m′

1(e). Hence, ‖β3(C)‖ = ‖m′
1(C)‖ =

∑

e∈C

m′
1(e) (Figure 3.6.C). Therefore, Equation 3.11 can be formulated as:

(3.12)
a) minimize: Q(C) = F

(
‖β1(C)‖, ‖β2(C)‖, ‖β5(C)‖

)

b) constraints: ‖β3(C)‖ ≤ βmax
3 and ‖β4(C)‖ ≤ βmax

4

The term βmax
3 (and βmax

4) denotes the same value we had in Equation 3.11, i.e., available

memory of processor 1 (and 2).

3.3.2. Graph Expansion. The number of convex cuts C in G can grow exponentially

with respect to graph complexity. In order to tractably find the optimal path, we would

need to eliminate paths that are guaranteed to yield inferior solutions from consideration.

For this purpose, we first planarize the task graph G using the transformation developed

in [HG09]. Note that although some programming languages, such as StreamIt [TKA02],

guarantee task graph planarity, our proposed method does not require a specific language.

Given a planar embedding of G(V,E), we construct the well-defined dual graph G∗(V ∗, E∗).

The β attributes of edges e ∈ E are transferred to the corresponding edges e∗ ∈ E∗ (Figure

3.6.D). A simple path P ∗ from vertex s∗ to t∗ in graph G∗ identifies a convex cut C in

graph G. Therefore, the dual graph enables us to evaluate the quality of a task assignment

by evaluating the quality of the corresponding path from s∗ to t∗ in G∗. That is, since

‖βi(C)‖ =
∑

e∈C

βi(e) =
∑

e∗∈P ∗

βi(e
∗) = ‖βi(P

∗)‖, we evaluate Equation 3.12 from P ∗ instead

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 26

(A)

w1(e), w2(e),
m1(e), m2(e)

n (a b), m1(a b), m2(a b)
w�1 = w1(a)+ w1(b)
w�2 = w2(d)
m�1= m1(a)+ m1(a b)

+ m1(b)+ m1(b d)
m�2= m2(d e)+ m2(d)

+ m2(b d)
n = n (b d)

w�1 = w1(c)
w�2 = w2(f)+ w2(e)
m�1= m1(b c)+ m1(c)

+ m1(c e)
m�2= m2(f)+ m2(e f)

+ m2(e)+ m2(c e)
n = n (c e)

(B)

(D)

_
(b d)

(C)

_
(c e)

s*
r*

t*

_
(b d)

_
(c e)

cut C

path P*

e

a

c

b

e

a

c

f

b

d

e

a

c

f

b

d

e

a

c

ff

b

d d

Figure 3.6. A) Task graph G(a, f) and a sample cut C. B) New attributes
after the transformation. C) Vector representation of the attributes. D)
Dual graph G∗(s∗, t∗), and path P ∗.

of C:

(3.13)
a) minimize: Q(P ∗) = F

(
‖β1(P

∗)‖, ‖β2(P
∗)‖, ‖β5(P

∗)‖
)

b) constraints: ‖β3(P
∗)‖ ≤ βmax

3 and ‖β4(P
∗)‖ ≤ βmax

4

Next, we expand the dual graph G∗ to a graph G†, constructed in four dimensional

(4-D) space, to better visualize the situation (Figure 3.7). Each dimension of G† represents

one element of the attribute vector, e.g., workload of the top partition. For every vertex v∗

in G∗, we have vertices v∗[i1, i2, i3, i4] in graph G† in 4-D space. For example in the figure,

vertex r∗ is expanded into two vertices r∗[0, 3, 2, 7] and r∗[2, 2, 4, 4] (4-D indices of the two

vertices are in the middle column of Figure 3.7.D). Graph G† is constructed such that the

information stored in ~β(e∗) attributes in graph G∗, is represented in the structure of graph

G†. Formally, vertex u∗[~i] (abbreviation for u∗[i1, i2, i3, i4]) is connected to vertex v∗[~j] in

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 27

_
(ab)=[1,5,2,13,1]

[2,1,4,4,1]

[7 ,1,12,2,1]

[0 ,3,2,7 ,2]

[2,2,4,4,1]

(A)

s*
r*

t*

e

a

c

f

b

d

[4,0 ,6,1,1]e

a

(B)

c

f

b

d

n =m1=m2=2

w1=2 w1=2
m2=2

(C)
1 2 3

6
54

(D)

3

4

1

2

max
3

max
4

c o n s train t v io late d

0 1 2 3 4 5 6 7 891011

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7
s* r* t*

s* r* t*

0 1 2 3 4 5 6 7 891011 0 1 2 3 4 5 6 7 891011

Figure 3.7. A) In task graph G(a, f), all the attributes w1, w2, n, m1 and
m2 are equal to 1, except for those shown in the figure. B) Dual graph

G∗(s∗, t∗) and the ~β attributes. C) Six possible paths to choose from. D)

Construction of G† in 4-D space.

G† when:

(3.14)







there exists an edge e∗(u∗, v∗) in G∗

and ~i + ~β(e∗) = ~j

where only the first four elements of ~β is used in this equation. In other words, for a given

edge e∗ connecting u∗ to v∗ in graph G∗ and a given vector ~i, there is a unique edge in

G† which connects vertex u∗[~i] to v∗[~i + β(e∗)]. As a result, for a given path P ∗ from s∗

to t∗ in G∗, and a given start vector ~o, there is a unique path in G† starting from s∗[~o].

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 28

That is, β5(u
∗[~i], v∗[~j]) = β5(u

∗, v∗). Moreover, if we choose ~o = [0, 0, 0, 0], the path in

G† always ends at t∗[~β(P ∗)], because each edge from u∗[~i] to v∗[~j] in the path incurs an

increase of ~j −~i in the value of ~β(P ∗). In graph G†, graph structure replaces the attribute

information except for β5, which annotates the edges of G† in the same way as edges of G∗.

For example, consider cut C4 = {ce, bd} or equivalently P ∗
4 = {dash,black}. Using graph

G∗ (Figure 3.7.A), we calculate ~β(P ∗
4) as [2, 2, 4, 4, 1] + [2, 1, 4, 4, 1] = [4, 3, 8, 8, 2], while in

graph G† we have the same value (the first four elements of the vector) by simply looking

up the index of t∗ at the end of path P ∗
4 (Figure 3.7.D).

Therefore, one can evaluate Equation 3.13 for all possible paths by enumerating the

vertices t∗ at the end of every path P ∗ in graph G†. Let us denote the end point as t̃(P ∗).

For example, t̃(P ∗
4) = [4, 3, 8, 8], because P ∗

4 ends at vertex t∗[4, 3, 8, 8]. The problem can

be reformulated as:

(3.15)
a) minimize: Q(P ∗) = F

(
t̃1(P

∗), t̃2(P
∗), ‖β5(P

∗)‖
)

b) constraints: t̃3(P
∗) ≤ βmax

3 and t̃4(P
∗) ≤ βmax

4

Note that constructing of G† does not reduce algorithmic complexity of the partitioning.

It is merely outlined for better visualization, and to enable subsequent optimizations.

3.3.3. Hard Constraints. A path in G† that visits the vertex v[~i] will lead to a

partitioning solution whose first four attributes are at least as large as the elements of i.

Therefore, we can trim out infeasible solutions, violating at least one of the hard constraints,

during construction of G†. This is achieved not by trimming paths that violate Equation

3.15.b after construction of G†, but by refusing to insert violating edges in G† in the first

place. Each time we are about to connect an existing vertex u∗[~i] to a new vertex v∗[~j],

violations of the hard constraints can be detected, in which case, vertex v and the edge

are discarded. For example in Figure 3.7, assume βmax
3 = 10 and βmax

4 = 11. Path P ∗
1

violates the constraint because 0 + β4(ab) ≥ βmax
4 , i.e., the 4th attribute of the new vertex

t∗[1, 5, 2, 13] is beyond the limit. P ∗
6 violates the constraint too. Thus, vertex u∗[~i] is

connected to vertex v∗[~j] only if:

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 29

(3.16)







there exists an edge e∗(u∗, v∗) in G∗

and ~i + ~β(e∗) = ~j

and j3 ≤ βmax
3 and j4 ≤ βmax

4

As a result, graph G† is constructed such that any path from s∗ to a t∗ vertex in

G† identifies a feasible solution. It follows that Equation 3.15.b can be removed from

consideration, and fewer paths that are left in G† should be evaluated to optimize Equation

3.15.a.

Other constraints can be encoded similarly. For example, one could embed hard con-

straints on the maximum workload that could be assigned to either processor, which trans-

lates to trimming edges in G† based on the first or second attribute.

3.3.4. Cost Function Minimization. The first four elements in the attribute vector

of a path from s∗[~0] to t̃ can be expressed based on the coordinates of the t̃ vertex in 4-D

space. Hence, all paths that terminate at the same end point in G† share the same attribute

vector. That is, all such paths lead to task assignments that incur the same workload and

memory distribution, and are only different in their inter-processor communication volume.

Among such possible task assignments, one would typically prefer the solution that in-

curs the minimum communication. This is to say that the cost function Q is non-descending

in the fifth element of the attribute vector, i.e., ‖β5(P
∗)‖. Equivalently, among a group of

competing paths terminating at the same end point, we are interested in the path with

minimum β5.

Recall that the edges of G† are annotated with their β5 attribute. We can treat edge an-

notations as distance labels in G†, and run single-source multiple-destination shortest path

on the graph from source vertex s∗[~0] to all possible t̃ end points. The shortest path proce-

dure would prune many possible paths that do not minimize cost function Q. Specifically,

for every possible end point t̃, it only leaves one path in the graph that terminates there. For

example in Figure 3.7.D, two paths arrive at the same end point: t̃(P ∗
3) = t̃(P ∗

4) = [4, 3, 8, 8].

However, only P ∗
4 is maintained for end point t∗[4, 3, 8, 8] (Figure 3.8).

3.3. VERSATILE TASK ASSIGNMENT VIA GRAPH PARTITIONING 30

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

0 1 2 3 4 5

0

1

2

3

4

5

6

7

5= 2

1

1

1

s h o r te s t p a th fo r th is t

6 ,2

4 ,3

2,4

t
1
,t

2

max(6+2, 2+2) = 8

max(4 +2, 2+3) = 6

max(2+3 , 3 +4) = 7

b e s t p a thQ = m a x (W
1
+ N , N + W

2
)

1

1

1

2

Figure 3.8. Finding the shortest paths to t∗ end points, and evaluating the
cost function Q = max{‖w1(V1)‖ + ‖n(c)‖, ‖w2(V2)‖ + ‖n(c)‖} for them.

We can calculate the value of Q at each of the t̃ points to find the end point, and the

corresponding path, which globally minimizes Q (Figure 3.8). This procedure delivers an

exact solution, which is guaranteed to optimize the cost function subject to hard constraints.

One might be able to prune out more candidate points from consideration, if more

specific information about the cost function is known. For example, if one wants to avoid

highly skewed workload distribution, he can ignore the end points whose w1 or w2 attribute

is below or above a certain threshold.

3.3.5. Algorithm Complexity. The task graph and subsequent graphs constructed

from that are directed acyclic graphs. Hence, the complexity of discussed transformations

and the shortest path algorithm grow linearly with the number of edges in the subject

graphs. Note that on a DAG, single source shortest path can be implemented using topo-

logical sort and thus has linear complexity [CLRS01a].

In planar graphs, the number of edges grows linearly with the number of vertices.

Therefore, time complexity of our algorithm is determined by the number of vertices in the

largest subject graph, i.e., G†. There are at most |V |×βmax
1 ×βmax

2 ×βmax
3 ×βmax

4 vertices in

G†, where |V | is the number of vertices in the application task graph. Thus, our algorithm

has the time complexity of O(|V | × Π4
i=1β

max
i).

This is considered pseudo-polynomial because the terms βmax
i merely depend on the

properties of the application graph and target platform. βmax
3 and βmax

4 represent the

3.4. APPROXIMATION METHOD 31

available memory on the processors. Moreover, βmax
1 is independent of the path choice,

because ‖β1(P
∗)‖ = ‖β1(C)‖ =

∑

v∈G1

w1(v) and thus its maximum value, βmax
1 , is the

computation workload of the entire application when all tasks are assigned to processor 1.

A similar argument holds for βmax
2 .

Note that since our graph bi-partitioning problem is NP-Complete no algorithm with

strictly-polynomial complexity exists unless P = NP . The pseudo-polynomial complexity

does not impose a real constraint on practicality of our approach. Pseudo-polynomial time

algorithms incur reasonable latency for typical problem instances, unless we have to deal

with very large attribute numbers which are uncommon in many practical settings [GJ90].

In practice, the attributes can be normalized so that βmax
i values remain relatively small.

3.4. Approximation Method

In this section, we present an approximation method for our exact task assignment

algorithm with strictly-polynomial complexity. The approximation algorithm takes as input

an acceptable error bound ξ, e.g., 10%, and guarantees that quality, i.e., throughput, of

the near-optimal solution would not be more than a factor of ξ away from the optimal

throughput.

We reduce the complexity by simplifying graph G† in the exact algorithm. We illustrate

that partitioning quality is not degraded beyond the intended limit in the course of the

process. Specifically, the number of vertices in the expanded graph G† is reduced to O(|V |×

Π4
i=1 log βmax

i) from the original O(|V | × Π4
i=1β

max
i). In each of the four βi dimensions of

the 4-D space in G†, we judiciously trim the βmax
i possible values of indices to only log βmax

i

distinct numbers.

The idea is to replace multiple attribute values with a single representative value for

that attribute. That is, we would like to develop an approximation function β̈ = f(β) to

generate a representative value β̈ for a range of β values. For a given number δ > 0, the

approximation function is defined as

(3.17) β̈ = f(β) = (1 + δ)

j

logβ
1+δ

k

and f(0) = 0

We apply this function whenever a new edge is to be added to graph G†. Thus, for

constructing the path corresponding to P ∗ from s∗ to t∗ in G∗, the approximation function

3.4. APPROXIMATION METHOD 32

(A)
βi 0 1 2 − 3 4 − 7 8 − 15

β̈i = f(βi) 0 1 2 4 8

0 1 2 4

0

1

2

4

0 1 2 4

0

1

2

4

0 1 2 4

0

1

2

4

(B)

0 1 2 4 8

0

1

2

4

8

0

1

2

4

8

0

1

2

4

8

0 1 2 4 8 0 1 2 4 8

3

4

1

2

Figure 3.9. A) Approximation function. B) Constructing the approxi-

mated graph G† from Figure 3.7.

is applied k times, where k is the number of edges in path P ∗. Figure 3.9 illustrates the

idea when δ = ~1, and possible values are trimmed to only 0, 1, 2, 4, and 8.

For example, consider path P ∗
3 = {longdash,dot} in Figure 3.9. Originally, the longdash-

marked edge connected s∗[0, 0, 0, 0] to r∗[0+0, 0+3, 0+2, 0+7] = r∗[0, 3, 2, 7]. After applying

the approximation, the path ends at r∗[f(0 + 0), f(0 + 3), f(0 + 2), f(0 + 7)] = r∗[0, 2, 2, 4].

Similar procedure is applied to the next edge in the path, i.e., the dot-marked edge. It starts

from the approximated vertex r∗[0, 2, 2, 4] and ends in t∗[f(0+4), f(2+0), f(2+6), f(4+1)] =

t∗[4, 2, 8, 4].

After approximation, the number of vertices in the graph G† becomes proportional to

|V | × Π4
i=1 log βmax

i , because in each of the four βi dimensions, the above approximation

function results in one of the following possible distinct numbers: 0, 1, 1+δ, (1+δ)2 , · · · , (1+

δ)b, where b =
⌊

log
βmax

i

1+δ

⌋

.

Lemma 3.5. We have
β

1 + δ
< β̈ ≤ β

Theorem 3.6. If we set δ = F
√

1 + ε − 1, where ε > 0 and F is the number of faces in

task graph G, then we have

(3.18)
‖β(P ∗)‖

1 + ε
< ‖β̈(P ∗)‖ ≤ ‖β(P ∗)‖

3.4. APPROXIMATION METHOD 33

This means that for every path P ∗ from s∗ to t∗ in the expanded graph G†, the ap-

proximated value ‖β̈(P ∗)‖ is at most degraded by a factor of 1 + ε from its original value

‖β(P ∗)‖.

Note that β and β̈ are vectors. In fact, δ is also a vector with four elements, which

implies that we can have different approximation factors for different dimensions of the

4-D space. All mathematical operations are performed on each of the four dimensions

independently.

The following theorems quantify the impact of approximation on memory constraints

and cost function minimization.

Corollary 3.7. The original hard constraints

(3.19) ‖β3(P
∗)‖ ≤ βmax

3 and ‖β4(P
∗)‖ ≤ βmax

4

can be replaced with following constraints, which use approximated values

(3.20) ‖β̈3(P
∗)‖ ≤ βmax

3

1 + ε
and ‖β̈4(P

∗)‖ ≤ βmax
4

1 + ε

Corollary 3.8. Let β̈max = f(βmax). The constraints

(3.21) ‖β̈3(P
∗)‖ ≤ β̈max

3 and ‖β̈4(P
∗)‖ ≤ β̈max

4

guarantee that

(3.22) ‖β3(P
∗)‖ ≤ (1 + ε)βmax

3 and ‖β4(P
∗)‖ ≤ (1 + ε)βmax

4

Therefore, to construct the new set of memory constraints, we may use either of the

above two corollaries. The formula in Corollary 3.7 guarantees that the original constraints

are met, at the expense of trimming some possibly-valid paths. The formula in Corol-

lary 3.8 provides a new constant bound within a factor of 1 + ε from the bound in the

original constraint. We proceed to consider the impact of approximation on cost function

minimization.

Theorem 3.9. Let Q̈(P ∗) = F
(
‖β̈1(P

∗)‖, ‖β̈2(P
∗)‖, ‖β5(P

∗)‖
)

denote the approximated

value of our cost function Q(P ∗) = F
(
‖β1(P

∗)‖, ‖β2(P
∗)‖, ‖β5(P

∗)‖
)
, for the path P ∗. We

3.4. APPROXIMATION METHOD 34

have

(3.23)
(
1 − ε

1 + ε
S(P ∗)

)
Q(P ∗) ≤ Q̈(P ∗) ≤ Q(P ∗)

where S(P ∗) is defined as

(3.24) S(P ∗) =
‖β1(P

∗)‖
Q(P ∗)

max
∂Q

∂β1
+

‖β2(P
∗)‖

Q(P ∗)
max

∂Q

∂β2

Note that although Q is originally a discrete function, throughout the following math-

ematical analysis, we look at it as a continuous function. That is, we use the same for-

mula for Q, but assume its domain is R instead of N. Note that Q does not have to

be differentiable. As long as Q is differentiable on several intervals and continuous (i.e.,

piece-wise differentiable), we are able to calculate the maximum slope. For example,

max
∂Q

∂β1
= max

∂Q

∂β1
= 1 for Q = max{‖w1(V1)‖ + α1‖n(c)‖, α2‖n(c)‖ + ‖w2(V2)‖} =

max{‖β1(C)‖ + α1‖β5(C)‖, α2‖β5(C)‖ + ‖β2(C)‖}, because the slope of Q with respect to

both ‖β1(C)‖ and ‖β2(C)‖ is either 0 or 1 on its entire domain.

Corollary 3.10. Let Smax be the maximum possible value of S over the domain of

function Q. We have

(3.25) ∀P ∗ : (1 − ε

1 + ε
Smax) Q(P ∗) ≤ Q̈(P ∗) ≤ Q(P ∗)

The above theorem states that the error in calculating cost function is bounded within

a constant factor. The main objective of graph bi-partitioning is to find the optimal path

P ∗ = P ∗
opt which minimizes our cost function Q(P ∗). Using the approximation method,

however, Q̈(P ∗) is minimized for some near-optimum path P ∗ = P ∗
near.

Corollary 3.11. Let ξ =
ε

1 + ε
Smax, and T =

1

Q
denote the throughput. We have

(3.26) (1 − ξ) Topt ≤ Tnear ≤ Topt

Consequently, for a given tolerable error bound ξ, throughput of the near-optimal so-

lution would not be more than a factor of ξ away from the optimal throughput. The

appropriate approximation factor δ is calculated using ξ in the following manner. First, we

calculate ε from equation ξ =
ε

1 + ε
Smax, and then, δ from equation δ = F

√
1 + ε − 1. The

3.5. PRACTICAL EXTENSIONS 35

approximation process provides a controllable knob to trade task assignment quality with

computation complexity and runtime.

3.5. Practical Extensions

3.5.1. Hardware-Inspired Versatility and Extensibility. We presented our tech-

nique using a selected set of attributes and an unconstrained cost function. In this section,

we discuss extensions to our proposed task assignment algorithm, and demonstrate its utility

in handling a diverse set of hardware customization scenarios.

One aspect of versatility is the ability to model execution period as a general, rather

arbitrary, function of processor workloads (‖wk(Vk)‖) and communication traffic (‖n(C)‖).

This provides a simple yet effective way to fine tune the process of software synthesis to

better match a specific hardware architecture. As an example, consider the hardware in

Figure 3.10, and assume that there is no cache. A reasonable choice of the cost function

would be Q = max{‖w1(V1)‖ + α1‖n(C)‖
150

,
hop

400
,
‖w2(V2)‖ + α2‖n(C)‖

200
}, to account for the

disparity in clock frequency, network bandwidth and its latency. The term hop accounts

for the router speed, and varies based on router implementation and statistical patterns of

the traffic from other possible units. This cost function accounts for the details of onchip

network, as well as the heterogeneity in processors’ micro-architecture and clock frequency.

The technique can also be extended to handle other attributes. For example in Figure

3.10, using the wi and n attributes alone, it is not easy to account for the effect of L1

cache on processor 1. In this case, we can add an additional attribute ls1(v) to vertices

of task graph G. The attribute ls1(v) models the dynamic count of load/store instruc-

tions, in one firing of the task corresponding to vertex v. Similar to ‖w1(V1)‖, we can

define LS1 =
∑

v∈V1

ls1(v). Subsequently, execution period estimation cost function can be

generalized to Q = F (‖w1(V1)‖, ‖w2(V2)‖, ‖n(C)‖, LS1), in order to consider the impact

of the new attribute on application throughput. For example, one might use the function

Q = max{LS1 × mr × mp + ‖w1(V1)‖ + α1‖n(C)‖
150

,
hop

400
,
‖w2(V2)‖ + α2‖n(C)‖

200
} to model

the impact of cache misses. The extra cycles in processor 1 is equal to LS1 × mr × mp,

where mr and mp are the approximated miss rate and miss penalty, respectively. Note that

we compact all attributes into one vector. As a result, addition of a new attribute, such as

ls1(v), adds a dimension to the attribute vector and the space of graph G†.

3.5. PRACTICAL EXTENSIONS 36

64

K B

P11 5 0
M H z 2 0 0

M H z

40 0
M B /s e c .

1 6

K B

L
1

a lu

P2

fp ua lu

Figure 3.10. A sample heterogeneous dual processor hardware.

Similarly, we can remove extra attributes and simplify the formulation in case they are

not relevant for a given hardware. For example if processors are homogeneous, we may

eliminate attribute w2(v) and replace the term ‖w2(V2)‖ in the performance estimation

function with W − ‖w1(V1)‖, where W =
∑

v∈G

w1(v). In such cases, ~β would have fewer

elements, and graph G† would be constructed in a space with fewer dimensions.

We may also introduce or eliminate hardware-inspired hard constraints. For example,

if we have a target hardware with separate data and instruction memory modules, we can

introduce distinct constraints on the size of each memory module, e.g., D1 ≤ data memory

of processor 1, and I1 ≤ instruction memory of processor 1. Similarly, one could introduce

hard constraints on the processor workloads to eliminate solutions that result in highly

skewed workload distributions.

3.5.2. K-Way Partitioning. We develop a heuristic based on the exact bi-partitioning

method of Section 3.3 to partition the application task graph into arbitrary number (K)

of subgraphs. The basic idea is to successively apply our bi-partitioning algorithm K − 1

times to find K − 1 cuts that partition the graph into K rather balanced pieces. Partitions

of graph G with total workload of ‖w(V)‖ each have an ideal workload of
‖w(V)‖

K
.

Figure 3.11 shows an example on K = 4 processors (note that K is not restricted to

power of two). In this example, the exact bi-partitioning algorithm is first used to partition

the task graph in two subgraphs (Figure 3.11.D), and then, each of them are further divided

in two smaller subgraphs, one for each processor (Figure 3.11.E). As shown in Figure 3.11.B

and 3.11.C, by recursively applying the exact bi-partitioning algorithm, we are able to assign

tasks to both one- and two-dimensional pipeline platforms.

To apply the successive bi-partitioning, we calculate K1 and K2, which denote the

number of processors available for tasks of each partition and hence, K1 + K2 = K. Our

initial estimation is that K1 is as close as possible to K2, however, adjustments might be

3.5. PRACTICAL EXTENSIONS 37

(E)(D)(A)

(C)

(B)

P1 P2

P1 P2

P3P4

P1 P2

P4P3

Figure 3.11. A) Pipeline dual-core. B) Two-dimensional pipeline quad-
core. C) One-dimensional pipeline quad-core. D) Sample task assignment
by exact bi-partitioning algorithm. E) Sample task assignment based on (D)
for architectures in (B) and (C).

needed if the workload of the application cannot be equally distributed among the two sets

of processors. For example if one of application tasks is much more intensive that the other

tasks, the partition containing that task will have a much larger workload and hence, K1

and K2 have to be adjusted.

The bi-partitioning algorithm of Section 3.3 can be used in many ways, however, here

we use it to develop only a one-dimensional K-way algorithm as follows. The cost function

Q = max{‖w(V1)‖ + ‖n(C)‖, ‖w(V2)‖ + ‖n(C)‖} is replaced with Q = max{‖w(V1)‖
K1

+

‖n(C)‖, ‖w(V2)‖
K2

+ ‖n(C)‖}, where K1 = 1 and K2 = 1 in the original K = 2 case.

Therefore, the cost function remains intact for bi-partitioning case.

In K > 2 cases, we try to consider the effect of future partitions. As the graph G is

partitioned into two subgraphs G1 and G2, we take into account that G1 and G2 will be

partitioned into K1 and K2 subgraphs, respectively. That’s why in the new cost function,

‖w(V1)‖ is divided by K1 and ‖w(V2)‖ by K2. However, the communication overhead

(‖n(C)‖) term is not changed in the updated cost function, because it should represent the

cost of communication between processor K1 and K1 + 1 in the pipeline.

3.5.3. Task Graph Planarization. In our discussions so far, we assumed that ap-

plication task graph is planar. Some programming languages, such as StreamIt [TKA02],

guarantee the planarity of specified applications. However, our proposed method does not

3.5. PRACTICAL EXTENSIONS 38

(A) (B)

a b a1 b1

b2 a2

w=0

(C) (D) (E)

portion of a
non-planar
graph G.

c(a1)=c(a)
c(a2)=c(a)
c(b1)=c(b)
c(b2)=c(b)

G1

G2

Figure 3.12. A) portion of an example non-planar graph G with one edge
crossing. B) Transforming G into planar graph Gp by adding a dummy node
C) An invalid cut in Gp. D) A valid cut in Gp. E) The resulting cut in G

require developers to use a specific programming language, and thus, the input graph might

be non-planar. We introduce a transformation to planarize non-planar task graphs, and to

make them amenable to our task assignment technique.

For a given non-planar input graph G, we start with the best embedding of G with

minimum number of edge crossings. The goal is to eliminate edge crossings by adding

dummy nodes at every edge crossing, while guaranteeing that graph partitioning estimations

are accurate. We refer to the planarized graph as Gp. As an example, Figure 3.12.A shows

a portion of a non-planar graph with one crossing and Figure 3.12.B is the planarized graph

with one dummy node.

Conceptually, the dummy node passes data from its incoming edges to corresponding

outgoing edges, i.e., data on edge a1 goes to edge a2 and the data on b1 goes to b2. However,

the node and its corresponding computation do not appear in the generated code. We

assign computation workload and communication cost values to the dummy bypass node

and introduced edges, so the Gp can be correctly analyzed using our algorithm. We show

that convex cuts of Gp correspond to convex task assignments in G.

The introduced edges in Gp have the same communication latencies as their corre-

sponding edge in the original non-planar graph G. Specifically, c(a1) = c(a2) = c(a) and

c(b1) = c(b2) = c(b) (Figure 3.12.B). In addition, workload of the dummy node is set to zero

(w(dummy) = 0), because dummy node does not introduce any additional computation in

the synthesized software. It will be removed before code generation by carefully reordering

data communication during code generation.

3.5. PRACTICAL EXTENSIONS 39

Note that a convex cut in Gp gives a convex task assignment in G. Furthermore, the

computation workload and communication latency of such a convex cut in Gp accurately

models the workload and inter-processor communication of the corresponding task assign-

ment in G. A convex cut in Gp does not cross both a1 and a2. Crossing both a1 and a2

implies non-convexity (Figures 3.12.C and 3.12.D), and is not considered in this chapter.

As a result, we partition Gp without crossing the same edge of G twice, which enables us

to infer a valid task assignment solution after partitioning Gp (Figure 3.12.E).

3.6. EMPIRICAL EVALUATION 40

3.6. Empirical Evaluation

In this section, we first evaluate the dual-processor task assignment method (Section

3.3), and next, evaluate the k-way hueristic for a chain of processors (Section 3.5).

3.6.1. Soft Dual-Processor Platforms. Our evaluation is based on measurements of

application throughput and memory requirement using operational binary on prototyped

hardware. We use Altera DE2 FPGA board to implement soft dual-processor platforms

using NiosII/f cores [Nio]. NiosII/f is a 32-bit, in-order, single issue, pipeline RISC processor

with configurable architectural parameters.

We experiment with several different hardware configurations. In all cases, processors

and the communication link run at 100 MHz. Processors use tightly coupled instruction

memory constructed out of FPGA’s onchip RAM blocks. Both processors have integer

multipliers, but in processor p1 it is built out of logic elements (LEs), and in p2 it is

built out of FPGA’s embedded DSP blocks, which offers better performance. Figure 3.13

summarizes the configuration of the 2 × 2 × 3 = 12 soft dual-processor platforms used in

our study:

Computation: We experiment with two microarchitecture configurations, referred to

as A and B. In setting A, p2 has a hardware floating point unit (FPU), while p1 uses software

emulation to carry out floating point operation. In B, p1 has FPU and p2 uses software

emulation.

Communication; Similarly, there are two different communication links (F or R). In

setting F, inter-processor link is a 32-bit FIFO channel with 256 words buffer. We instantiate

the link using Altera Onchip FIFO Memory in SOPC Builder software. In setting R, pro-

cessors are connected through a third processor that emulates the function of a router in a

network-on-chip (NoC). To model the impact of network traffic on message delivery latency

in NoC, routing latency is assumed to be a random variable with normal distribution.

Memory: A total of 32 KB is available for instruction memory. We consider three dif-

ferent settings for allocating memory to processors: 08-24, 16-16 and 24-08. For example,

the first row in Figure 3.13 refers to a configuration in which processor p1 and p2 have 8 KB

and 24 KB of memory, respectively. The next two rows show two different distribution of

memory space between the two processors.

3.6. EMPIRICAL EVALUATION 41

Processor p1
Link

Processor p2

Name int float imem int float imem

A-F-08-24 8K 24K

A-F-16-16 LE - 16K fifo DSP FPU 16K
A-F-24-08 24K 8K

B-F-08-24 8K 24K

B-F-16-16 LE FPU 16K fifo DSP - 16K
B-F-24-08 24K 8K

A-R-08-24 8K 24K
A-R-16-16 LE - 16K router DSP FPU 16K
A-R-24-08 24K 8K

B-R-08-24 8K 24K
B-R-16-16 LE FPU 16K router DSP - 16K
B-R-24-08 24K 8K

Figure 3.13. Target soft dual-processor platforms.

3.6.2. Evaluation Methodology. We implemented our method in StreamIt 2.1 com-

pilation framework [G+02]. The compiler takes as input an application specified in StreamIt

language, and after static scheduling and partitioning of the graph, generates separate C

codes for execution on parallel processors. To generate executable binary, each C code

is compiled with NiosII IDE C compiler (-O2 optimization) for its corresponding target

Nios processor. Subsequently, applications’ code sizes are obtained from the generated ex-

ecutable binaries. If the code size is larger than the available instruction memory, it is not

possible to execute it on the soft processors. For feasible cases, the binaries are mapped

to corresponding processors in prototyped architectures. Subsequently, application steady

state throughput is measured during execution on FPGA.

We compare three different task assignment algorithms. First, we evaluate the proposed

versatile algorithm described in this chapter, including the approximation method with pa-

rameter ε = 0.1 for workload values. We also evaluate the algorithm without considering the

heterogeneity in the architecture, i.e., w1(v) = w2(v) for all tasks, and without considering

the memory size constraints. Third, we use StreamIt built-in task assignment algorithm,

which does not directly address heterogeneous architectures or memory constraints [G+02].

We refer to the versatile algorithm as Ver, its simplified version as Pre, and StreamIt as

Str.

Pre handles heterogeneous architectures only by estimating their relative performance

with a constant factor r, which is established by profiling the processors using a set of

representative applications. For example, we found that for AF and AR configurations,

3.6. EMPIRICAL EVALUATION 42

r = 0.7 models the relative performance of processor p1 over p2, for benchmark applications

containing floating point operations. Similarly, rAF = rAR = 0.4 is the relative performance

for integer benchmarks. Pre does not consider memory constraints.

3.6.3. Attribute Estimation. Using high-level information available to the compiler,

we estimate the attributes with simple models. Our empirical observations validate the

effectiveness of the models.

Communication: As discussed previously on page 9 in Chapter 2, attribute n(e) can

be calculated by analyzing the SDF graph.

Computation: We profiled NiosII/f processors to estimate their cycle per instruction

(CPI) distribution. Subsequently, internal computations of tasks are analyzed at high-

level, and a rough mapping between high-level StreamIt language constructs and processor

instructions is determined. For SDF-compliant streaming applications, control-flow char-

acteristics are minimal. As a result, we employed first order estimations, such as average

if-then-else path latencies, whenever needed. To account for the effect of input-dependant

control flow, we consider the average latency of input-dependant tasks for few randomly se-

lected input data. The analysis derived latencyk(v), which represents the execution latency

of one firing of task v on processor pk. Therefore, as discussed previously on page 9, wk(v)

is estimated as r(v) × latencyk(v).

Memory: Estimating the memory requirement is similar to the above workload es-

timation, except that here we count the number of assembly instructions corresponding

to high-level statements of StreamIt language without actually compiling the applica-

tions to assembly. The analysis derived m∗
k(v), which represents the amount of instruc-

tions memory needed for one firing of vertex v on processor pk. Therefore, mk(v) =

mem(r(v), for)+m∗
k(v), where mem(r(v), for) is for the loop that would iteratively execute

task v. Hence, if r(v) = 1, mem(r(v), for) = 0. Otherwise, it is a constant number, e.g., 12

in our platforms. Note that estimations are tuned to -O2 compiler optimization switch.

3.6.4. Performance Estimation and Memory Constraints. We mentioned that

the cost function modeling application execution period should be tailored to target plat-

form. In the first six target configurations, A-F- and B-F-, the communication link is a

FIFO channel with single-cycle delivery latency. Therefore, we customize the cost function

3.6. EMPIRICAL EVALUATION 43

QAF = QBF = max(‖w1(V1)‖ + α1‖n(C)‖, ‖w2(V2)‖ + α2‖n(C)‖), with α1 = α2 = 8. The

parameter α1 (α2) models the additional workload that has to be introduced on the sender

(receiver) to write (read) a word of data to (from) the FIFO. Its constant value depends

on our software generation setup. Similarly, in the next six targets, A-R- and B-R-, we use

QAR = QBR = max(‖w1(V1)‖ + 8‖n(C)‖, ‖n(C)‖ × avg(L), ‖w2(V2)‖ + 8‖n(C)‖), where

avg(L) is the average value of the random latency in the router.

In all cases, hard constraints are introduced to satisfy instruction memory constraints.

There is no constraint on data memory, since it is large enough for all our benchmark appli-

cations. Hence, we only maintain attributes mi(v) (and not mi(e)) because they represent

code sizes. In case of A-F-08-24, for example, the set of constraints is M1(V1) ≤ 8 KB and

M2(V2) ≤ 24 KB.

3.6.5. Benchmarks. Figure 3.14 shows different benchmarks used in our evaluations.

They are well-known streaming applications that frequently appear in embedded application

space. The applications are selected from the StreamIt benchmark set [G+02], considering

the memory constraints of our FPGA board.

3.6.6. Experiment Results. Figure 3.15 shows the accuracy of our high-level code

size estimation scheme. The comparison and estimation accuracy are significant, because

our task assignment algorithm uses the code size information to guarantee that generated

binary code will fit in the limited instruction memory of soft processors. Note that we

Application Description Operations |V | |E|

FFT Fast Fourier Transform float 81 105

TDE Time Domain Equalizer float 50 60

MMF Blocked Matrix Multiply float 21 21

MMI Blocked Matrix Multiply int 21 21

SORT Bitonic Sort int (no mult.) 314 407

Figure 3.14. Benchmark applications. The last two columns show the
number of vertices and edges in the application task graph.

Processor FFT TDE MMF MMI SORT

Estimate p1 2828 3944 3260 1920 7644

(bytes) p2 14384 13548 3740 2992 22832

Actual p1 2844 3864 3340 2320 5908

(bytes) p2 14560 12280 4196 3036 21296

Figure 3.15. Accuracy of high-level memory estimates for A-F-08-24.

3.6. EMPIRICAL EVALUATION 44

decided to use estimates because at the time of task assignment the binary code is not

available and is yet to be compiled. In addition, tasks are not accurately compile-able in

isolation either, because of a variety of reasons such as volume-dependent communication,

shared variable definitions, and the difference between inter-processor vs. intra-processor

communication code.

On average, over all configurations and benchmarks, our high-level code size estimates

are within 10% of the size of compiled binary. Some inaccuracy is inevitable at high-level,

due to lack of information about many compilation and optimization decisions in generating

binary code.

Figure 3.16 presents measured application throughput, normalized with respect to a

single processor with a LE multiplier and without an FPU. The experiments highlight that

the versatile algorithm (Ver) always produces code that fits in limited instruction memory

0
1
2
3
4
5

FFT TDE MMF

A-F-

0 8 -2 4

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -F-

0 8 -2 4

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

A-F-

1 6 -1 6

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -F-

1 6 -1 6

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

A-F-

2 4 -0 8

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -F-

2 4 -0 8

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

A-R -

0 8 -2 4

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -R -

0 8 -2 4

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

A-R -

1 6 -1 6

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -R -

1 6 -1 6

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

A-R -

2 4 -0 8

0

1

2

MMI SORT

0

25

50

75

100

average %

0
1
2
3
4
5

FFT TDE MMF

B -R -

2 4 -0 8

0

1

2

MMI SORT

0

25

50

75

100

average %

Ver Pre Str

Figure 3.16. Applications’ throughput normalized with respect to a pro-
cessor with LE multiplier and no FPU. Pre and Str failed to generate feasible
implementations for some architectures.

3.6. EMPIRICAL EVALUATION 45

of soft processors. While for -08-24 and -24-08 configurations, the other two algorithms

(Pre and Str) fail to generate feasible implementations for some benchmarks. For example

in case of SORT application, which needs about 32KB memory, they always fail. MMI and

MMF require small amount of memory, and therefore, they are feasibly implemented with all

the three algorithms.

In addition, Ver consistently outperforms the other two techniques, and delivers the

highest throughput in all cases. This underscores versatility of our proposed technique, and

the fact that it can effectively handle heterogeneity and specific requirements of different

target architectures.

Both Pre and Ver algorithms do not explicitly consider the impact of task assignment

on code size, and therefore, fail to generate feasible solutions in all cases. For architectures

with -16-16 suffix, which have a balanced distribution of memory, all three algorithms

produce feasible implementations.

SORT application contains a sequence of integer comparisons and conditional swaps, and

no multiplications or floating point operations. Thus, SORT is indifferent to the micro-

architecture heterogeneity that exists in our platforms. That is why Str, which assumes

homogeneous processors, delivers the same throughput as Ver. On the other hand, Pre

considers an average 0.7 factor in relative performance, which is irrelevant for SORT, and

hence, degrades throughput.

Hardware FPU is substantially more efficient than software emulation of floating point

operations. MMF, TDE and FFT have large numbers of such operations, and hence, their best

throughput is observed when we assign as many tasks as possible to the processor with

hardware FPU. Our integrated memory size estimation and heterogeneity modeling enables

us to considerably outperform the competitors for floating point applications. In general,

considering the effect of heterogeneous architecture is essential for most of the applications.

Here, we can clearly see the advantage of Ver over the other two algorithms. Pre only

partially considers platforms’ heterogeneity, and often outperforms Str.

Figure 3.17 shows the tradeoff in execution time and memory usage of Ver, measured

on a Linux/P4 machine for FFT benchmark and A-F-100-100 platform, with respect to

approximation accuracy. As expected, both runtime and memory usage of the algorithm

decrease with decrease in approximation accuracy, i.e., with larger ε. Effectively, ε gives

3.6. EMPIRICAL EVALUATION 46

1.E-01

1.E+ 00

1.E+ 01

1.E+ 02

1.E+ 03

0.00 0.10 0.2 0 0.3 0 0.4 0 0.5 0 0.6 0 0.7 0 0.8 0 0.9 0 1.00

epsilon

Mem ory (MB) Runtim e (sec)

Figure 3.17. Memory usage and execution time of Ver for different ap-
proximation accuracy factors. Measured for FFT on A-F-100-100 platform.

users a controllable knob by which, they can optimize algorithm’s runtime and memory

footprint in return for willingness to accept small deviation from optimal solution. For

example in case of Figure 3.17, one could save about two orders of magnitude in runtime

and memory usage by accepting at most 20% loss in quality, relative to the exact solution.

3.6.7. Experiment Results for K-way Hueristic. Based on the architecture AF

in Figure 3.13, we constructed a chain of identical processors with up to 5 core that fit in our

FPGA board. Figure 3.18 presents the measured throughput normalized by the single-core

throughput. Results are shown for both our task assignment algorithms (called “Ver” in

the figures) and StreamIt 2.1. Note that for K = 2, we use the optimal task assignment

algorithm described in Section 3.3, but for K ≥ 3 we use the heuristic approach of Section

3.5.

The following metrics and figures (3.19,3.20,3.21,3.22) present quantitative analysis for

the above results. Figure 3.19 shows the amount of extra throughput gained by our method

comparing to StreamIt 2.1:

(3.27) 100 × Throughput − Throughput(StreamIt)

Throughput(singlecore)

For two processors, our method has 25%, 15% and 14% more throughput on FFT, BSORT,

and MATMUL, and no extra gain on the other three benchmarks. This reconfirms our theoret-

ical claim of optimality for exact task assignment algorithm of Section 3.3. The algorithm

is always better than (or equal with) another method, which is StreamIt 2.1 in this case.

3.6. EMPIRICAL EVALUATION 47

0

0 . 5

1

1. 5

2

2 . 5

3

3 . 5

4

4 . 5

1 2 3

Our Method
StreamIt 2.1

FFT

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

1 2 3 4 5

MATMUL

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5

TDE

1

1.5

2

2.5

3

1 2 3 4 5

FILTER

1

1.5

2

2.5

3

3.5

1 2 3 4 5

BSORT

1
1.5

2
2.5

3
3.5

4
4.5

1 2 3 4 5

DCT

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

1 2 3 4 5

Figure 3.18. Normalized throughput for StreamIt 2.1 and our method. X
axis is the number of processors and Y axis is the normalized throughput. We
use the exact algorithm (Section 3.3) for K = 2, and the heuristic approach
(Section 3.5) for K ≥ 3.

2-core 3-core 4-core 5-core
MATMUL 14 1 20 -
FFT 25 13 0 13
TDE 0 59 109 -

FILTER 0 -2 104 -
BSORT 15 -2 20 6
DCT 0 11 22 24

Avg. 9.0 13.3 45.8 14.3

Figure 3.19. Percentage of extra throughput gained by our method com-
paring to StreamIt 2.1, for K = 2, 3, 4 and 5 processors. Note that this data
is not a comparison with baseline.

3.6. EMPIRICAL EVALUATION 48

As shown in Figure 3.19 for K ≥ 3, out of 18 different cases (3 × 6), the heuristic

method gains an extra throughput of more than 100% on two cases. However, as shown

in the figure, it may sometimes lead to throughput degredation. This is expected because

there is no theoretically proven result on the optimality of heuristic methods in general.

Figures 3.20 and 3.21 show workload distribution of StreamIt 2.1 and our task assign-

ment methods. For example, they show that StreamIt task assignment has assigned more

than 50% of the total computation workload of MATMUL to fourth processor of the quad-core

hardware (p4 in the figure). This is because MATMUL has a compute intensive node in its

task graph which has a heavy workload.

The cost function mentioned in Section 3.3 does not directly minimize the workload im-

balance, but as shown in Figure 3.20, our algorithm also balances the computation workload

better than StreamIt 2.1. In some cases the hierarchical graph structure of the benchmark

0%

50%

100%

1

p5
p4
p3
p2
p1

FFT

0%

20%

40%

60%

80%

100%

2 3 4 5

MATMUL

0%

20%

40%

60%

80%

100%

2 3 4 5

DCT

0%

20%

40%

60%

80%

100%

2 3 4 5

TDE

0%

20%

40%

60%

80%

100%

2 3 4 5

FILTER

0%

20%

40%

60%

80%

100%

2 3 4 5

BSORT

0%

20%

40%

60%

80%

100%

2 3 4 5

Figure 3.20. Workload distribution of our task assignment algorithm for
K = 2, 3, 4 and 5 processors. X axis is the number of processors and Y
axis is the workload distribution. Each color represents one processor of the
multi-core hardware.

3.6. EMPIRICAL EVALUATION 49

applications does not allow StreamIt 2.1 to effectively partition the task graph, but our

graph bi-partitioning algorithm is not limited to the hierarchical structure, and therefore,

has a larger search space. Figure 3.22 shows that this case happens for TDE application.

0%

50%

100%

1

p5
p4
p3
p2
p1

FFT

0%

20%

40%

60%

80%

100%

2 3 4 5

MATMUL

0%

20%

40%

60%

80%

100%

2 3 4 5

DCT

0%

20%

40%

60%

80%

100%

2 3 4 5

TDE

0%

20%

40%

60%

80%

100%

2 3 4 5

FILTER

0%

20%

40%

60%

80%

100%

2 3 4 5

BSORT

0%

20%

40%

60%

80%

100%

2 3 4 5

Figure 3.21. Workload distribution of StreamIt 2.1 task assignment algo-
rithm for K = 2, 3, 4 and 5 processors. X axis is the number of processors
and Y axis is the workload distribution. Each color represents one processor
of the multi-core hardware.

(C)(B)(A)

Figure 3.22. Task assignment for TDE with A) 2, B) 3 and C) 4 processors.
Dotted lines show the results of our algorithm, and boxes show the results
from StreamIt 2.1. A larger picture of the TDE application is available at
http : //leps.ece.ucdavis.edu/files/publication/matin/tde.png

3.7. RELATED WORK AND CHAPTER SUMMARY 50

By comparing Figure 3.19 with 3.20 and 3.21, we notice that system throughput does

not directly correlate to how well the workload is distributed. For example, in MATMUL with

K = 2 cores, our algorithm increases the amount of workload imbalance but it actually

achieves 14% higher throughput. This is mainly because the overall throughput is an

implementation-dependent function of both computation workloads and communication

overhead.

3.7. Related Work and Chapter Summary

A number of recent efforts address the task assignment problem for manycore software

synthesis. Gordon et al. [G+02] and Thies et al. [TLA03] describe a task assignment

method to partially explore task parallelism for homogeneous platforms. Gordon et al.

[GTA06] extend their work by a heuristic algorithm for acyclic StreamIt task graphs to

exploit task, data and pipeline parallelism. As part of the Ptolemy project, Pino et al.

[P+95] propose a combined task assignment and scheduling method for acyclic SDF graphs

on homogeneous platforms.

Stuijk et al. [SBGC07] propose a task assignment method for heterogeneous systems.

Tasks are first sorted based on their impact on throughput, then a greedy method assigns

one task at a time to the processor with the least workload. Cong et al. [CHJ07] present

an algorithm for assignment of acyclic task graphs onto application specific soft multipro-

cessors. It starts by labeling the tasks, followed by clustering them into processors, and

finally, tries to reduce the number of processors by packing more tasks onto under-utilized

processors.

Some researchers have taken the approach of exploring the design space via enumera-

tion. A multi-objective genetic task assignment algorithm for heterogeneous architectures

is presented in [EEP06]. It considers power consumption, computation workload and com-

munication overheads, however, it requires about 1000 generations to converge. Kudlur

and Mahlke [KM08] propose an ILP formulation in order to deliver provably-optimal solu-

tions. Approaches based on exhaustive search of the design space are typically not scalable

because the runtime and/or memory requirement grow exponentially with problem size.

In this chapter we first presented a dual-processor task assignment algorithm that un-

like other methods delivers provably-optimal solutions, with a reasonably low complexity

3.7. RELATED WORK AND CHAPTER SUMMARY 51

by exploiting the planarity of target task graphs. Some SDFs, such as those specified in

StreamIt, are inherently planar. In addition, we developed a planarization transformation

to handle non-planar task graphs. The method supports exact handling of heterogeneous

processors and memory size constraints and versatility in targeting various platform cus-

tomizations. We also developd a heuristic method for pipelined execution on targets with

an arbitrary number of processors. Future directions include applying the formal properties

discussed in this chapter to design of a versatile manycore task assignment with optimal

solution and low complexity.

52

CHAPTER 4

Scalable Estimation of Application Throughput on Manycore

Platforms

Measuring performance (throughput) of a parallel application on the actual manycore

hardware platform is not always possible especially for future versions of the platform with

larger number of cores that has not yet been implemented. Overall system performance is

determined not only by the processors that execute the parallel software modules but also

by the onchip network which transfers the inter-processor messages between the modules.

Therefore, performance measurement through execution of the parallel software on other

platforms such as GPU does not yield to relevant information because the effect of onchip

network is not modeled accurately.

One alternative is cycle-accurate Verilog simulation of the manycore system. In this

method, the entire system including processor cores, memory units and inter-processor

communication network is simulated with a commercial Verilog simulator such as Modelsim.

A similar method is cycle-accurate instruction-set simulation (ISS) which models only the

behavior of the hardware units. Note that to carry out the simulation, the parallel software

modules should be compiled into binaries and loaded into the model.

ISS simulation or RTL/behavioral Verilog simulation of a manycore system provides

accurate information but the unreasonably long runtime makes it impractical, especially for

large number of cores. In this chapter, we present a performance estimation methodology,

called SEAM, with acceptable accuracy, high scalability with respect to the number of

processors, and high degree of freedom in targeting platforms with different underlying

onchip network architectures. We accurately model the effect of onchip network through

Verilog simulation, but abstract the local execution phases of every processor in order to

speed up the simulation. Our experiments show that the estimation error is less than 15%

[HHG08].

4.1. SEAM: SEQUENTIAL EXECUTION ABSTRACTION MODEL 53

4.1. SEAM: Sequential Execution Abstraction Model

This section overviews our methodology in estimating throughput of a manycore sys-

tem. The input to our performance estimation is an architecture model, including both

processor and interconnect configuration, and associated task assignment and schedule of

the application. The objective is to estimate throughput, without compiling the application.

4.1.1. Performance Model Reduction. Accurate manycore simulation requires cycle-

accurate monitoring of instruction execution at each processor, complemented by cycle-

accurate simulation of interconnect architecture, which is not scalable to larger number of

cores. We introduce a simplified workload and communication characterization method that

eliminates the need to cycle-accurately simulate instructions execution and data communi-

cation. Our technique preserves coarse-grain temporal behavior of the application, and is

both fast and accurate.

Our approach is to reduce the complexity of performance model by coarsening temporal

behavior of concurrent software modules. We view a software module (running on one of the

processors) as a series of computation and communication phases, and hence, we attempt to

characterize latency and volume of computation and communication phases at system-level.

Subsequently, a substantially-reduced Verilog model is generated for the system in which,

characterized temporal phases replace software module instruction sequence. Simulating

the reduced model is considerably faster, while giving reasonable performance accuracy.

Figure 4.1 visualizes an example of our model simplification. A sample synthesized

software is shown in Figure 4.1.A. Our technique views the processors as traffic genera-

tor/consumer with known delay elements, and simplifies temporal behavior of the code

based on estimations (Figure 4.1.B). Details of our model reduction is the following.

4.1.2. Task Workload Characterization. The first step to estimate system per-

formance, is to characterize the workload intensity associated with each task. Although

compilers can perform various inter-task optimizations after several tasks are assigned to

the same processor, it is reasonable to ignore such potential optimizations at system-level.

Therefore, we analyze tasks in isolation and associate a deterministic number to each task

that represents its workload latency on its allocated processor.

4.1. SEAM: SEQUENTIAL EXECUTION ABSTRACTION MODEL 54

float xz[16],zt[16]

while(1)

read(xz[1:16],core1)

Hz(xz[1:16],zt[1:16])

write(zt[1:16],core4)

w
(z

)
cy

cl
es

 o
f

se
qu

en
tia

l e
xe

cu
tio

n

b lock in g -rea d | x z |

tok en s from core1

b lock in g -write | zt |

tok en s to core4

inter-processor

netw ork

C ore 1

C ore 3

C ore 2

C ore 4

(A) (B) (C)

Figure 4.1. Example based on Figure 2.2 on page 8: A) Synthesized code
for core #2. B) The simplified performance model for core #2. C) Per-
formance estimation of the target manycore system based on the simplified
model.

Specifically, we profile processors to estimate their cycle per instruction (CPI) distri-

bution. Next, tasks internal computations are analyzed at high-level, without compiling to

assembly, to derive a rough mapping between high-level language constructs and processor

instructions. Furthermore, we use first order control-flow estimation such as average if-

then-else path latencies, and expected number of loop iterations, to account for application

control-flow behavior. Note that streaming applications are mostly data-flow intensive and

their control-flow characteristics are minimal. This one-time analysis derives the estimated

number of clock cycles needed for execution of a task on its assigned processor.

Similarly, inter-task communication cost is estimated from high-level application specifi-

cation in which, parallelism is explicit. Given a specific task assignment and for a particular

task, the number of data tokens that might have to be transmitted to other processors is

readily calculated by checking the processors to which immediate descendant of the task

are allocated. For applications modeled as synchronous dataflow graphs, each node appears

a specific number of times in the steady state schedule. The number of appearances and

data production and consumption rates are known statically, which enable quick one-time

characterization of tasks data communication volume.

4.1.3. Processor Workload Characterization. Tasks assigned to the same proces-

sor are scheduled to generate the corresponding executable code (Section 2.3.4). Scheduling

impacts temporal behavior of code running on the processor, because temporal motion of

inter-processor read/write operations might create or eliminate blockings on communication

channels. Therefore, parallel application performance directly depends on task schedules,

among other factors.

4.2. EMPIRICAL EVALUATION 55

At system-level, the workload associated to a processor can be estimated to be a straight-

forward combination of workloads of tasks that are assigned to that processor, according

to the given schedule. Note that this estimation incurs inaccuracies because combined

workload of several tasks (in terms of cycles) is not necessarily equal to sum total of tasks

workloads that are characterized in isolation. Compiler optimizations, such as enhanced

register allocation to reduce register spilling, typically improve upon sum total of tasks

workloads. However, “sum total” estimation is a good approximation at system-level.

Consequently, we simplify temporal behavior of a processor workload to a sequence of

computation, with estimated latency, and communication, with estimated volume. This

simplification is used to generate a temporal behavior model for each interconnect port,

which replaces processor and its executable binary in a cycle-accurate simulation.

4.2. Empirical Evaluation

We utilized Xilinx Embedded Development Kit (EDK) to develop the aforementioned

soft multi-processor synthesis framework. Xilinx EDK provides a library of soft processors

and interconnect primitives. Xilinx 32-bit soft processor, called Microblaze, can be cus-

tomized in a number of ways. We characterized Microblaze processor to determine its clock

per instruction (CPI) distribution.

Microblazes can be interconnected using Xilinx Fast Simplex Links (FSL), which essen-

tially implement point-to-point FIFO channels with configurable buffer size and width. We

also implemented a standard network-on-chip router element with five bidirectional ports.

Typically, one port connects to a processor and the remaining four ports are connected

to neighboring routers. Hence, routers can be cascaded to interconnect an arbitrary-sized

mesh of processors.

Figure 4.2 illustrates the flow of our experiments. We utilize StreamIt [TKA02] com-

piler to analyze and implement high-level application specifications. StreamIt is a program-

ming language whose semantics are closely related to synchronous dataflow model of com-

putation [LM87a] with a few enhancement. Specifically, standard SDF model is enhanced

to allow application initialization phase and utilization of limited control flow in program

specification. In addition, StreamIt provides an open-source compilation framework for

stream programs specified in its language. StreamIt compiler takes as input an application

4.2. EMPIRICAL EVALUATION 56

Manycore

A rch itectu re

X ilinx E D K

& C C om p iler

A p p lication

(.s tr file)
S tream It

C om p iler
T as k A s s ig nm ent

& S ch ed u ling

S ys tem -L ev el W ork load

C h aracteriz ation

S oftw are S ynth es is

(p arallel C cod es)

S ys tem

P erform ance

S im u lation

H ard w are

S ynth es is

Meas u rem ent on

F P G A b oard

Figure 4.2. Experiments flow

specified in enhanced synchronous dataflow (SDF) semantics with StreamIt syntax, and af-

ter partitioning of the task graph, generates parallel C codes for parallel processors. Parallel

codes should be compiled for the target uni-processor to generate executable binary.

We implemented our task and processor workload characterization method in StreamIt

before generating C codes. Processor workloads are estimated using high-level specification

of the applications in StreamIt language and Microblaze CPI distribution, as discussed in

Section 4.1. In addition, StreamIt candidate task assignment and schedule are used during

processors workload characterization.

The characterized workload is spelled out as a simple Verilog code that breaks up

estimated temporal behavior of the processors into computation, with known latency, and

communication, with known volume, phases (Section 4.1). This models is integrated with

the interconnect architecture model, and simulated using Modelsim simulator.

In order to evaluate the accuracy of our results, we implemented candidate architectures

on Xilinx ML310 board that has a Virtex II Pro FPGA. StreamIt and Microblaze C compiler

(mb-gcc) were used to generate executable binaries from high-level application task graph.

Application throughput measurements from operating hardware are used as baseline to

determine the estimation accuracy.

4.2. EMPIRICAL EVALUATION 57

Arch. # of Interconnect Buffer
name processors arch. Size
3x2-2 6 3x2 packet-switch 2
3x2-4 6 3x2 packet-switch 4
3x2-8 6 3x2 packet-switch 8
2x2-2 4 2x2 packet-switch 2
2x2-4 4 2x2 packet-switch 4
2x2-8 4 2x2 packet-switch 8

4-FSL-16 4 FSL cascade 16
4-FSL-32 4 FSL cascade 32
2-FSL-16 2 FSL cascade 16
4-FSL-32 2 FSL cascade 32

Figure 4.3. Candidate interconnect architectures and configurations

We designed ten different candidate architectures, which are summarized in Figure 4.3.

Candidate architectures contain different number of Microblaze processors that are inter-

connected using either packet-switched on-chip network or point-to-point FIFO channels

(FSL). The buffer size in both packet-switching routers and FIFO channels are configured

to explore different design points.

We selected five representative streaming applications from StreamIt benchmarks: Bitonic

Sort, FFT, Filter Bank, Blocked Matrix Multiplication, and Time Devision Equalization.

We estimated system throughput for all applications on the aforementioned ten candidate

architectures. Candidate architectures were also implemented on FPGA board and appli-

cations were mapped to measure performance.

Figure 4.4 illustrates the average runtime of SEAM in estimating the performance across

all candidate architectures. The simulations were run for 100 iterations in order to reach

steady state. The last entry on X-axis shows the geometric mean value for all applications.

As shown on the right vertical axis of Figure 4.4, the error in estimating the performance

with SEAM is around 15%. This error is calculated as the relative difference between the

actual throughput measured on FGPA, and estimated throughput using our model. The

estimated throughput is consistenly lower than actual measurements, which suggests that

our workload estimation is slightly pessimistic.

Inaccuracy in throughput estimation is primarily due to two reasons. First, during

high-level workload characterization a rough mapping between task specification and pro-

cessor instructions are determined, which naturally is not perfectly accurate. Second, some

4.3. RELATED WORK AND CHAPTER SUMMARY 58

0

10

20

30

40

50

BSORT TDE MATMUL FILTER FFT Geo. Mean

R
u

n
ti

m
e

 (
S

e
c

)

14.6

14.7

14.8

14.9

15.0

15.1

15.2

15.3

15.4

15.5

E
s

ti
m

a
ti

o
n

 E
rr

o
r

(%
)

Estimation Runtime Estimation Error

Figure 4.4. Performance estimation accuracy and runtime comparison.

compiler optimizations, such as improved register allocation, loop overhead reduction and

memory access optimization, are enabled by combining multiple tasks that run on the same

processor. At system-level, it is hard and runtime-expensive to consider such optimizations.

Later in the experiment section of Chapter 6 on page 105, we employed SEAM to

estimate the performance of several applications and architectures. The workload estimates

in that work are from profiling and hence, the effect of compiler optimizations are taken

into account. The results show that SEAM is very accurate. We also considered the effect

of cache size on the accuracy of SEAM in that chapter.

4.3. Related Work and Chapter Summary

Performance of a manycore system is determined not only by the processors that execute

the parallel software modules but also by the onchip network which transfers the inter-

processor messages between the modules. Therefore, performance measurement through

execution of the parallel software on other parallel platforms such as GPU or multi-threaded

CPUs does not yield to reliable performance measures because the effect of onchip network

is not modeled accurately. Cycle-accurate Verilog or ISS simulations of the entire system

[LKJ+08] are unreasonably slow specially for manycore systems with large number of

processors.

Stuijk et. al [SGB08] propose a performance estimation method, in which the appli-

cation execution is essentially simulated at high-level using the task workload estimates.

The simulation keeps track of the execution state, and finishes once steady state has been

reached, at which point the steady state throughput is reported. They also propose a

4.3. RELATED WORK AND CHAPTER SUMMARY 59

method to explore the tradeoff between application throughput and inter-processor buffer

capacity.

SEAM employs the same idea in estimating the steady state throughput. The workload

estimates are used to abstract the local execution phases of processors, and the application

execution is simulated until steady state has been reached. However, SEAM advances the

previous work in two ways. First, as opposed to considering a self-timed execution of all the

tasks [SGB08], SEAM supports an arbitrary task assignment and task schedule. Second,

through transformation to abstract Verilog models, SEAM quickly and accurately models

the effect onchip network architecture. Currently, SEAM does not model the effect of cache

because most embedded manycore [KDH+05, TCM+08] have local software managed

memories. However, since stream programs present a high degree of cache locality, some

architectures [BEA+08] incorporate traditional caches, and hence, one direction for future

enhancement of SEAM is to include high-level modeling of cache behavior without line by

line simulation of the (binary) code.

60

CHAPTER 5

Throughput-Memory Tradeoff via Overlapping Application

Iterations

Judicious scheduling of tasks in time is crucial in maximizing the throughput. The focus

of traditional task scheduling techniques is to optimize a periodic schedule for tasks that

are assigned to the same processor. This approach can severely degrade the throughput if

task assignment tries to better balance the workload by allowing non-convex cuts, e.g., by

grouping the tasks that are far away from each other in the SDF graph.

Iteration overlapping, which is closely related to software pipelining, schedules the tasks

which are assigned to the same processor in time, while allowing multiple iterations of the

periodic application execution be alive at the same time. This adds an initial execution

phase before the periodic execution, and provides the opportunity to achieve a much higher

throughput.

In this chapter, we investigate iteration overlapping as a controlling knob to trade ap-

plication throughput with its code size. Given an initial task assignment and scheduling,

our objective is to construct overlapped local task schedules that would correctly imple-

ment the application, and would lead to competitive throughput-memory tradeoff points.

We rigorously analyze and present underlying properties of the formulated tradeoff. For

example, we present the bounds on maximum throughput, minimum code size and con-

straints on valid overlapped schedules. We utilize the properties to develop an algorithm

that generates a set of competitive design points with respect to one another, in the two

dimensional throughput-memory plane. We implement the technique within our software

synthesis framework, and evaluate it on a number of applications and several parallel ar-

chitectures. The experimental results confirm the effectiveness of our theoretical modeling

and approach [HG11a].

5.1. PRELIMINARIES AND DEFINITIONS 61

5.1. Preliminaries and Definitions

In this section, we briefly review the process of baseline software synthesis, i.e., no

iteration overlapping, and also, define the formal terms which are used in later sections to

explain the properties of iteration overlapping.

5.1.1. Baseline Software Synthesis. We consider a special case of SDF in which

the producer and consumer tasks of every channel have the same port rates. As a result

each task needs to execute only once in the periodic execution, i.e., r(v) = 1 for all tasks.

Figures 5.1.A and 5.1.B illustrate a simple task graph and a platform with two processors

(P = 2).

Task Assignment: As mentioned before, first tasks are assigned to the platform pro-

cessors. In the example, tasks a, b and d are assigned to processor p1, and task c to

processor p2 (Figure 5.1.C). We define cut channels C ⊂ E as the channels whose producer

and consumer tasks are assigned to different processors. In our example, C = {x, y, z}.

Formally,

(5.1) C = {e(v, u) ∈ E | p(v) 6= p(u)}

where p(v) denotes the processor that is allocated to task v. The tokens on a cut channel

e(v, u) ∈ C should be transfered from processor p(v) to p(u) using the platform FIFO

channels. This is modeled by adding new write and read tasks to the task graph. Let us

denote such tasks as ek, where k is the processor that the new task belongs to. For example,

task x1 denotes the write task which is added to processor p1 due to the cut edge x (Figure

5.1.D). Formally

(5.2)
p : V → {1, 2, . . . , P}

p(v) = k ⇐⇒ v ∈ Vk

where Vk denotes the set of tasks assigned to processor pk including the write and read

tasks, and Ek the set of channels between tasks v ∈ Vk. Therefore

(5.3)

P⋃

k=1

Vk = V and

P⋃

k=1

Ek = E − C

5.1. PRELIMINARIES AND DEFINITIONS 62

(A)

n(ab)
= 2 0

(B) P1 P2

(C) Task Assignment:

(E)Task S ch edu le: P 1 : (a,x1,b,y1,z1,d) (F) s(V1)={1,3,6,2,4,5}
P 2 : (x2,y2,c,z2) s(V2)={3,1,2,4}

w(c)

= 3

a

b

d

c
1 0

1 0

1 0 a

b

d

cy1

z1

y2

z2

(D)

a

b

d

c

x

z

y

x1 x2
1 0

3 0

P 1 P 2

V1={a,b,d,x
1,y1,z1}

V2={c,x
2,y2,z2}

w(a)= w(b)= w(d)= 1

Figure 5.1. Example: A) Example task graph. B) Target dual processor
platform. C) Tasks are assigned to processors. Cut channels are marked
with dashes. D) New write and read tasks are added to the graph. E) Tasks
are scheduled. F) Order function s represents the schedule.

Task Scheduling: Next, tasks that are assigned to the same processor are statically

scheduled for infinite periodic execution on that processor. For example, a valid periodic

schedule is (a, x1, b, y1, z1, d) for processor p1 and (x2, y2, c, z2) for processor p2 (Figure

5.1.E). Note that because of the inter-processor dependencies, i.e., the cut channels, sched-

uling of the tasks on one processor is not independent from scheduling of the tasks on other

processors. For example, although (y2, x2, c, z2) meets all the local dependencies in proces-

sor p2, it is not a valid schedule because p2 would read the wrong data from FIFO. The

data written to FIFO by task x1 is meant to be read by x2 but in this invalid schedule it

would be read by task y2.

Formally, task schedule is defined as a total order s(v) on the tasks v assigned to the

same processor:

(5.4)
s : V → N

∀v ∈ Vk : s(v) = sk(v)

where

(5.5)
sk : Vk → {1, 2, . . . , |Vk|}

sk(v) < sk(u) ⇐⇒ t(vi) < t(ui)

which holds if tasks v and u are assigned to the same processor, i.e., p(v) = p(u) = k. For

example, s(b) = s1(b) = 3 because b is the third task in the schedule of processor p1 (Figure

5.1.F). In the above equation, |Vk| denotes the number of tasks in Vk.

5.1. PRELIMINARIES AND DEFINITIONS 63

Throughout this chapter, for a task v, the term vi denotes the i’th invocation (firing)

of task v, i.e., the firing of task v from iteration i of the periodic application execution. We

say vi is the i’th instance of task v. The term t(vi) is the time at which i’th instance of

task v is fired.

Since sk is a one-to-one function, s−1
k is defined and it refers to the task at a certain

position in the schedule of processor pk. For example, s−1
1 (3) = b. Formally

(5.6)
s−1
k : {1, 2, . . . , |Vk|} → Vk

s−1
k (j) = v ⇐⇒ sk(v) = j

Task Firing Sequence: For a given task assignment and scheduling, the firing se-

quence of tasks in every processor is defined. We denote the task firing sequence in processor

pk with

(5.7) 〈Σk〉i=0→∞ = 〈σ1,i, σ2,i, . . . , σ|Vk|,i〉i=0→∞

where σj = s−1
k (j) is the task at position j in task schedule of processor pk, and thus, σj,i

denotes1 the i’th instance of task σj . As shown in Figure 5.2.A, the task firing sequence for

processor p1 in our example in Figure 5.1 is

(5.8) 〈Σ1〉i=0→∞ = 〈ai, x
1
i , bi, y

1
i , z

1
i , di〉i=0→∞

whose unrolled representation is

(5.9) a0, x
1
0, b0, y

1
0, z

1
0 , d0, a1, x

1
1, b1, y

1
1 , z

1
1 , d1, . . .

Code Generation: Given the sequence 〈Σk〉i=0→∞, synthesizing the software code of a

processor pk is straightforward. A while loop fires the tasks iteratively in the order given by

Σk. Figure 5.2.B shows the synthesized code for our example. Tasks read their inputs from,

and write their outputs to arrays. For tasks that are assigned to the same processor, inter-

task communication channels are implemented by passing the reference to the corresponding

array. Inter-processor communication is implemented using the aforementioned write and

1Here the term σj,i has two subscripts because the task name itself (σj) has a subscript. We had to use a second

subscript, i, to denote the firing instance.

5.1. PRELIMINARIES AND DEFINITIONS 64

x2ix1i

x2i-1x1i-1

P2P1time

ai

i
t
e
r
a
t
i
o
n

i

bi
y2iy1i

ci

z2iz1i
di

ci-1

y2i-1y1i-1

bi-1

ai-1

i
t
e
r
a
t
i
o
n

i
-
1

di-1

z2i-1z1i-1

E
P

 =
 9

(B) Code Generation:

//P2.C
int xc[10],yc[10],cz[10];

while()
read(xc,10,P1);
read(yc,10,P1);
c(xc,yc,cz);
write(cz,10,P1);

//P1.C
int ad[10],ab[20],ax[10],

bd[30],by[10],zd[10];

while()
a(ad,ab,ax);
write(ax,10,P2);
b(ab,bd,by);
write(by,10,P2);
read(zd,10,P2);
d(bd,ad,zd);

(C) Gantt

Ch art:

(A) T as k F iring S eq u enc e:

P1: <ai,x
1
i,bi,y

1
i,z
1
i,di>i=0

P2 : <x2i,y
2
i,ci,z

2
i>i=0

Figure 5.2. Baseline software synthesis: A) Task Firing Sequence. B)
Synthesized software modules. C) Gantt chart. Execution period is EP = 9.

read tasks that transfer the data between the buffer arrays and the platform FIFO channels

(Figure 5.2.B).

Attributes: Tasks and channels are annotated with the following attributes. Com-

putation workload w(v) represents the latency of executing task v ∈ Vk in processor pk.

Note that the workload assigned to a write/read task accounts only for transferring to-

kens from/to the buffer arrays to/from platform FIFO channels, and does not include the

wait times due to unavailability of buffer capacity/data in the interconnect fabric.

We also annotate the tasks v and channels e with their memory requirement m(v) and

m(e), respectively. That is, m(v) represents the amount of memory required by processor

pk to store the code that implements the data transformation function of a task v ∈ Vk.

Similarly, m(e) refers to the amount of memory allocated as an array on processor pk to

store data tokens of channel e ∈ Ek. For example in Figure 5.1, if we assume each data

token requires 1 byte of memory, we have m(bd) = n(bd) × sizeof(datatype) = 30 × 1 = 30

bytes. Formally,

(5.10)
w : V → N

m : E − C → N

5.1. PRELIMINARIES AND DEFINITIONS 65

5.1.2. Memory Requirement. Both tasks and channels take up memory in the syn-

thesized implementation. Specifically, the generated code for processor pk requires the

following amount of memory.

(5.11)

m(pk) =
∑

v∈Vk

m(v)

︸ ︷︷ ︸

task memory

+
∑

e∈Ek

m(e)

︸ ︷︷ ︸

channel memory

= ‖m(Vk)‖ + ‖m(Ek)‖

For example in Figure 5.2.B, the channel memory requirement of p1 is ‖m(E1)‖ =

m(ab) + m(ad) + m(ax) + m(bd) + m(by) + m(zd) = 20 + 10 + 10 + 30 + 10 + 10 = 90 bytes

(assuming sizeof(datatype) = 1). Total required memory is

(5.12)

M =
∑

1≤k≤P

m(pk)

=
∑

v∈V

m(v) +
∑

e∈E−C

m(e)

= ‖m(V)‖ + ‖m(E − C)‖

5.1.3. Execution Period. We visualize the steady state execution of a synthesized

application with a time-periodic Gantt chart (Figure 5.2.C). In our example, first tasks a,

x1, b, and y1 execute. As a result the data on ax and by are written to FIFO. At this point,

p2 which was waiting to read this data resumes its operation2 and task c executes. Next,

the data on cz is transferred to p1, and d which was waiting for this data executes, and this

pattern repeats periodically.

Throughput depends on a number of factors such as platform architecture, processors

workload and FIFO buffer capacities. We assume that the interconnect fabric provides large

buffers, which disentangle the steady state execution of producer and consumer pairs in the

steady state [SGB08].

2We assume latency of transferring a token to FIFO is considerably smaller than that of system calls to write or

read.

5.2. ITERATION OVERLAPPING 66

Execution period (EP) is the inverse of throughput and quantifies the execution latency

of one iteration of the periodic execution. Formally

(5.13)
EP = ∆t(v) = t(vi) − t(vi−1)

Throughput = 1 ÷ EP

where t(vi) denotes the time at which task v is fired for the i’th time. We assume i is large

enough for the application to exhibit its steady state behavior. In our example EP = 9.

Efficient algorithms exist for throughput calculation of dataflow applications [Thi07,

SGB08, WBGB10]. We use Gantt charts to visualize the periodic execution and to

facilitate presentation.

5.2. Iteration Overlapping

Given a specific task assignment and scheduling, we propose to synthesize software that

overlaps different iterations of the periodic execution in order to potentially improve the

throughput at the cost of larger memory requirement.

5.2.1. Motivating Example. As depicted in the example of Figure 5.2, baseline soft-

ware synthesis may produce code with poor performance, as some processor might block

its execution due to data dependencies. For example in processor p1, execution of task d

depends on the availability of data on the cut channel z which has to be received from task

c. Therefore p1 has to stay idle until p2 completes execution of task c (Figure 5.2).

Overlapping different iterations of the periodic execution provides the opportunity to

fill in the idle times with execution of tasks (subject to the given task assignment and

schedule) from a different iteration, which can potentially improve the throughput. Figure

5.3 depicts an overlapped version of the example in which, p1 does not stay idle while waiting

for completion of task c. Instead, p1 proceeds with the execution of tasks a and x1 from

the next iteration of the application execution. In other words, firings of a and x1 are one

iteration ahead of the current loop iteration. Therefore, as visualized in the Gantt chart of

Figure 5.3.C, all tasks repeat every 7 time units, which means EP is reduced from 9 to 7.

The improvement in throughput, however, comes at the expense of larger memory re-

quirement. In the example, channel ad requires twice the previously allocated amount of

memory. This is because task a is one iteration ahead of the while loop and it executes

5.2. ITERATION OVERLAPPING 67

P2P1time

i
t
e
r
a
t
i
o
n

i
-
1

z2i-2z1i-2

x1i-1 ci-2

ai-1

ci-1

ai

i
t
e
r
a
t
i
o
n

i

y2i-1Y1i-1

bi-1

x2i-1di-2

x2idi-1

z2i-1z1i-1

x1i

y2iy1i

bi

x1i+1

di

z2iz1i

ci

ai+1

E
P

 =
 7

(B) Code Generation:

//P2.C
int xc[10],yc[10],cz[10];

while()
read(xc,10,P1);
read(yc,10,P1);
c(xc,yc,cz);
write(cz,10,P1);

//P1.C
int ad[2][10],ab[20],ax[10],

bd[30],by[10],zd[10];

a(ad[0],ab,ax); //a0
write(ax,10,P2); //x0

int i=0;
while()
b(ab,bd,by); //bi
write(by,10,P2); //yi
a(ad[(i+1)%2],ab,ax); //ai+1
write(ax,10,P2); //xi+1
read(zd,10,P2); //zi
d(bd,ad[i%2],zd); //di
i++;

(C) Gantt Ch art:(A) T as k F iring S eq u enc e:

P1: a0,x
1
0,<bi,y

1
i,ai+1,x

1
i+1,z

1
i,di>i=0

P2 :<x2i,y
2
i,ci,z

2
i>i=0

0

d

6

(j)

j=
�1(j)
2

j

0

x2
1

0

y2
2

0

c

3

0

z2
4

1

x1
4

1

a

3

0

y1
2

00(j)

z1bj=
�1(j)
1

51j(D)

Figure 5.3. Overlapping different iterations yields a smaller execution pe-
riod of EP = 7 at the cost of increased memory requirement.

before task d in the loop. Thus, the inter-task memory requirement of processor p1 is

m(ab)+2m(ad)+m(ax)+m(bd)+m(by)+m(zd) = 20+20+10+30+10+10 = 100 bytes.

Assuming tasks are implemented as function calls, the overhead in instruction memory due

to iteration overlapping is negligible.

Note that the increase in throughput might also increase the latency. For example in

Figure 5.3, the latency is equal to t(di)− t(ai) = 12 which is larger than the original latency

of 9. Studying latency is beyond the scope of this work.

5.2.2. Problem Statement. We are interested in the tradeoff between throughput

and memory requirement of the synthesized implementations. Specifically, the problem can

be stated as:

Given an application task graph and its associated attributes (e.g. workloads w and

memory requirements m), task assignment and task scheduling (p and s), what are the

bounds on the best possible implementation in terms of throughput or memory requirement?

Can we generate a set of design points with smooth throughput-memory tradeoff via iteration

overlapping?

5.2. ITERATION OVERLAPPING 68

5.2.3. Formalism. Iteration overlapping perturbs the periodic task firing sequence

〈Σk〉i=0→∞ (for all k ∈ [1, P]) to a new task firing sequence Σ̃k = Σ̃in
k 〈Σ̃ss

k 〉i=0→∞, where

Σ̃in
k denotes the initialization and Σ̃ss

k the steady state (periodic) section of Σ̃k:

(5.14) 〈Σk〉i=0→∞
(λ,π)−−−→ Σ̃in

k 〈Σ̃ss
k 〉i=0→∞

For example, as shown in Figure 5.3.A, Σ̃1 is equal to

(5.15) a0, x0, 〈bi, y
1
i , ai+1, x

1
i+1, z

1
i , di〉i=0→∞

The above perturbation process is characterized by a tuple (λ, π), where λ and π are

the set of λ(v) and π(v) values for all v ∈ V , respectively. In short, λ(v) denotes the lead

index of task v, and π(v) denotes the position of task v in the periodic firing sequence. The

formal definitions are described below.

Steady State Sequence: Based on a given tuple (λ, π), the steady state task firing

sequence is defined as

(5.16)
〈Σ̃ss

k 〉i=0→∞ =

〈σ1,i+λ(σ1), σ2,i+λ(σ2), . . . , σ|Vk|,i+λ(σ|Vk |)〉i=0→∞

where σj is the j’th task in the periodic firing sequence Σ̃ss
k , and λ(σj) denotes the lead

index of task σj which is defined below.

In iteration i of the periodic sequence 〈Σ̃ss
k 〉i=0→∞, i + λ(v)’th instance of task v is

fired, i.e., task v from application iteration i + λ(v) is fired. For example in Figure 5.3.A,

λ(a) = λ(x1) = 1 and λ = 0 for all other tasks. Formally

(5.17) λ : V → N0

Function π defines a total order among the tasks that are assigned to same processor.

Formally

(5.18)
π : V → N

∀v ∈ Vk : π(v) = πk(v)

5.2. ITERATION OVERLAPPING 69

where

(5.19)
πk : Vk → {1, 2, . . . , |Vk|}

πk(v) < πk(u) ⇐⇒ t(vi+λ(v)) < t(ui+λ(u))

For example in Figure 5.3.A, π(a) = π1(a) = 3 because a is the third task in the periodic

sequence Σ̃ss
1 . Since πk is a one-to-one function, π−1

k is defined and it refers to the task at

a certain position in the periodic sequence Σ̃ss
k . For example, π−1

1 (3) = a. Formally

(5.20)
π−1

k : {1, 2, . . . , |Vk|} → Vk

π−1
k (j) = v ⇐⇒ πk(v) = j

Therefore, as shown in Figure 5.3.D, σj in definition of Σ̃ss
k above, is given by

(5.21) σj = π−1
k (j)

In baseline software synthesis (no iteration overlapping), the firing sequence is not per-

turbed which means Σ̃ss
k = Σss

k , hence, π(v) = s(v) and λ(v) = 0 for all tasks.

Initial Sequence: The initial task firing sequence Σ̃in
k is constructed from Σ̃ss

k as the

following. Σ̃in
k is a subsequence of the sequence 〈Σ̃ss

k 〉i=−∞→−1, i.e., Σ̃in
k @ 〈Σ̃ss

k 〉i=−∞→−1,

composed of tasks vi′ with i′ ≥ 0:

(5.22) Σ̃in
k = {vi′ | vi′ ∈ 〈Σ̃ss

k 〉i=−∞→−1, i
′ ≥ 0}

For example in Figure 5.3, Σ̃in
1 is equal to

(5.23)

〈bi, y
1
i , ai+1, x

1
i+1, z

1
i , di〉i=−∞→−1

= . . . , b−1, y
1
−1, a−1+1, x

1
−1+1, z

1
−1, d−1

= a0, x
1
0

Theorem 5.1. Let |Σ̃in
k | denote the number of task firings in Σ̃in

k . We have

(5.24) |Σ̃in
k | = ‖λ(Vk)‖

Proof. Based on the definition above, each task v ∈ Vk appears λ(v) times in the

initial sequence. Hence, the total number is
∑

v∈Vk

λ(v) = ‖λ(Vk)‖. �

5.2. ITERATION OVERLAPPING 70

5.2.4. Constraints of Valid Overlapping. As described above, the tuple (λ, π) spec-

ifies an iteration overlapping instance. However, not all possible values for the tuple yield

valid overlappings.

Task Scheduling Constraint: Iteration overlapping should respect the given task

assignment and task schedule. In other words, the overall task firing sequence can be

perturbed while firing order of the tasks in same application iteration is preserved. Let us

distinguish between intra-iteration schedule and inter-iteration schedule.

Intra-iteration schedule is the firing order of tasks from the same iteration of the appli-

cation execution. In other words, it is the given task firing schedule (Figure 5.1.E), and has

to be preserved after iteration overlapping. As we see in the Gantt chart in Figure 5.3.C,

tasks from the same iteration (same color in the figure) are still in the order of their original

steady state schedule, i.e., (a, b, x1, y1, z1, d) for processor p1 and (x2, y2, c, z2) for processor

p2. The position of a task v in the intra-iteration schedule of processor pk is given by sk(v).

Inter-iteration schedule, however, refers to the periodic pattern in the overall firing

sequence of tasks from any application iteration. In Figure 5.3, the overall task firing

sequence in processor p1 follows a periodic schedule (b, y1, a, x1, z1, d). The position of a

task v in the inter-iteration schedule of processor pk is given by πk(v).

The intra-iteration schedule (a, x1, b, y1, z1, d) is preserved because λ(a) = λ(x1) = 1

which means tasks a and x1 are always fired one iteration ahead of the periodic execution

(b, y1, a, x1, z1, d), i.e., the firing sequence Σ̃1 is

(5.25) a0, x0, b0, y
1
0, a1, x

1
1, z

1
0 , d0, b1, y

1
1 , a2, x

1
2, z

1
1 , d1, . . .

Theorem 5.2. The intra-iteration schedule in processor pk is preserved if and only if

the tuple (λ, π) satisfies the following condition.

(5.26) ∀v, u ∈ Vk, s(v) < s(u) :







λ(v) = λ(u) and π(v) < π(u)

or

λ(v) > λ(u)

5.2. ITERATION OVERLAPPING 71

Proof. Intra-iteration schedule in processor pk is given by sk. Based on the definition

of sk

(5.27)

sk(v) < sk(u) ⇐⇒ t(vi) < t(ui)

⇐⇒ t(vi−λ(v)
︸ ︷︷ ︸

i′′

+λ(v)) < t(ui−λ(u)
︸ ︷︷ ︸

i′

+λ(u))

⇐⇒ t(vi′′+λ(v)) < t(ui′+λ(u))

As discussed earlier in Section 5.2.3, during iteration i = l of 〈Σ̃ss
k 〉i=0→∞ periodic

sequence, l + λ(x)’th instance of task x, i.e., xl+λ(x), is fired. Therefore, vi′′+λ(v) is fired

during iteration i′′ and ui′+λ(u) during iteration i′ of the sequence 〈Σ̃ss
k 〉i=0→∞. Hence, the

above condition implies that i′′ can not be larger than i′, because if i′′ > i′ all task firings

in iteration i′ are before i′′ which is contradicting with above condition. If i′′ = i′, we have

(5.28) t(vi′′+λ(v)) < t(ui′′+λ(u)) ⇐⇒ π(v) < π(u)

and also

(5.29) i − λ(v) = i − λ(u) ⇐⇒ λ(v) = λ(u)

If i′′ < i′, we have

(5.30) i − λ(v) < i − λ(u) ⇐⇒ λ(v) > λ(u)

�

Intuitively, to guarantee vi fires before ui, v should fire before u when they both have

the same lead index λ, i.e., when vi and ui fire in the same iteration. Alternatively, v can

have a larger lead index which means vi fires in an earlier iteration. In short, the ordering

should be preserved unless the predecessor has a larger lead index.

Corollary 5.3. λ(v) = 0 for all v ∈ V alone characterizes the baseline software

synthesis, i.e., no iteration overlapping, because based on the above theorem, no firing order

is perturbed and thus π(v) = s(v).

5.2. ITERATION OVERLAPPING 72

FIFO Scheduling Constraint: Processors communicate by sending and receiving

messages through unidirectional FIFO links. Therefore, for an overlapping to be valid, the

messages have to be read from each FIFO in the same order written to that FIFO.

For a unidirectional FIFO f from processor pk′ to processor pk′′ , let Σ̃k′,f denote the

firing sequence of write tasks in pk′ that write to f . Σ̃k′,f is a subsequence of Σ̃k′, i.e.,

Σ̃k′,f @ Σ̃k′ . Similarly, let Σ̃k′′,f @ Σ̃k′′ denote the firing sequence of tasks in pk′′ that

read from f . For the FIFO f from p1 to p2 in Figure 5.3, Σ̃1,f = x1
0, 〈y1

i , x
1
i+1〉i=0→∞, and

Σ̃2,f = 〈x2
i , y

2
i 〉i=0→∞. An overlapping is valid only if, for all FIFOs, Σ̃k′,f is equivalent to

Σ̃k′′,f , which is denoted with

(5.31) Σ̃k′,f ≡ Σ̃k′′,f

The two write and read sequences are called equivalent when they refer to the same

sequence of cut channels Cf ⊂ C from pk′ to pk′′ . In our example, Cf = {x, y}, and

Σ̃1,f ≡ Σ̃2,f because both x1
0, 〈y1

i , x
1
i+1〉i=0→∞ and 〈x2

i , y
2
i 〉i=0→∞ refer to the same cut

channel sequence x, y, x, y, . . .

Let cj ’s denote the cut channels in Cf according to the order given by the inter-iteration

schedule of processor pk′′ . In other words

(5.32) π(ck′′

1) < π(ck′′

2) < . . . < π(ck′′

|Cf |
)

in which, ck
j denotes the associated write or read task of cut channel cj in processor pk. In

our example, c1 = x and c2 = y, hence, ck′

1 = x1, ck′

2 = y1, ck′′

1 = x2 and ck′′

2 = y2.

Theorem 5.4. For a unidirectional FIFO f between processors pk′ and pk′′, we have

Σ̃k′,f ≡ Σ̃k′′,f if and only if the tuple (λ, π) satisfies

(5.33) I) π(ck′

r+1) < . . . < π(ck′

|Cf |
) < π(ck′

1) < . . . < π(ck′

r)

and

(5.34) II) λ(ck′

j) =







λ(ck′′

j) + q if r + 1 ≤ j ≤ |Cf |

λ(ck′′

j) + q + 1 if 1 ≤ j ≤ r

5.2. ITERATION OVERLAPPING 73

i=1i=0 i=3

i=0

i=2

i=1~
k�,f=

~
k�,f=

q = 2 r = 2

k�,f

k�,f

~ in
k�,f

~ in
k�,f

Figure 5.4. Example write and read sequences of a FIFO channel f from
pk′ to pk′′ .

In this theorem, q ∈ Z and r ∈ [0, |Cf |) are determined based on tuple (λ, π) as

(5.35) ‖λk′,f‖ = ‖λk′′,f‖ + q|Cf | + r

where λk,f denotes the set of λ values for the write or read tasks, i.e., λk,f = {λ(ck
j)|cj ∈ Cf},

and thus, ‖λk,f‖ =
∑

cj∈Cf

λ(ck
j).

For example in Figure 5.3, ‖λ1,f‖ = λ(x1) + λ(y1) = 1 + 0 = 1 and ‖λ2,f‖ = λ(x2) +

λ(y2) = 0 + 0 = 0. Hence, r = 1 and q = 0. The FIFO scheduling constraint is satisfied in

this example overlapping. Figure 5.4 depicts a larger example.

Proof. Since the periodic sequences Σ̃ss
k′,f and Σ̃ss

k′′,f repeat iteratively, they should be a

circular shift of one another in order to have Σ̃k′,f ≡ Σ̃k′′,f (Figure 5.4). Hence, condition (I)

is required, in which r denotes the amount of the circular misplacement. Similar to Theorem

5.1, we have |Σ̃in
k,f | = ‖λk,f‖, and therefore, r is calculated as ‖λk′,f‖ = ‖λk′′,f‖ + q|Cf | + r

(Figure 5.4). As a result, the first |Cf | − r write tasks in iteration i of Σ̃k′,f match the

last |Cf | − r read tasks in iteration i + q of Σ̃k′′,f , for i ≥ 0 (The circle task in Figure 5.4).

Similarly the other write tasks (The square and diamond tasks) match their corresponding

read tasks from one iteration ahead, i.e., i + q + 1. Hence, condition (II) is required as

well. �

A tuple (λ, π) is valid if and only if both task scheduling and FIFO scheduling constraints

are satisfied, i.e., the intra-iteration schedule is preserved for all processors (Theorem 5.2),

and the write and read task firing sequences are equivalent for all FIFOs (Theorem 5.4).

5.2.5. Code Generation. A valid tuple (λ, π) determines a valid task firing sequence

Σ̃k = Σ̃in
k 〈Σ̃ss

k 〉i=0→∞ for every processor pk. Given Σ̃k, generating the corresponding par-

allel code modules is an extension of the baseline code generation, with the enhancement

5.2. ITERATION OVERLAPPING 74

of generating an epilogue. The steady state section of the code (the loop) in processor pk

is generated based on Σ̃ss
k , and the initial section based on Σ̃in

k (Figure 5.3.B).

In generating the codes, more than one copy of buffer memory may need to be allocated

for a channel e ∈ Ek if e is alive for more than one iteration, i.e., if i’th instance of the

producer task v is fired in an earlier loop iteration than i’th instance of consumer task u.

Let β(e) denote the number of buffer memories need to be allocated for a channel e ∈ Ek.

Formally,

(5.36) β : E − C → N

In baseline software synthesis (no iteration overlapping), β(e) = 1 for all channels.

Calculation of β is discussed in Section 5.2.6. In order to preserve the original functionality

of the application, i’th instance of task v, i.e., vi, writes to and ui reads from copy i%β(e)

of the buffer3. For example in Figure 5.3.B, channel ad requires two buffers, and hence for

any i ≥ 0, ai and di write to and read from buffer ad[i%2].

5.2.6. Memory Requirement.

Theorem 5.5. Given a valid tuple (λ, π), the above code generation procedure maintains

original functionality of the application only if

(5.37) β(e) =







λ(v) − λ(u) + 1 if π(v) < π(u)

λ(v) − λ(u) if π(u) < π(v)

copies of buffer memory is allocated for every channel e(v, u) ∈ Ek.

For example in Figure 5.3, β(ad) = 1 − 0 + 1 = 2 and β(ab) = 1 − 0 = 1. Note that, if

λ(v) = λ(u) then β(e) = 1 because π(v) < π(u) in such a case.

Proof. Due to iteration overlapping, between the firing instance vi and ui, other in-

stances of v, i.e., vi′ 6=i, might fire. Since vi is fired in iteration i − λ(v) and ui in iteration

i− λ(u), (i − λ(u)) − (i− λ(v)) = λ(v) − λ(u) other instances of v are fired between vi and

ui if π(v) < π(u), i.e., if v appears before u in the loop. Hence, β(e) = λ(v) − λ(u) + 1

3% denotes the mod operation.

5.3. THROUGHPUT-MEMORY TRADEOFF 75

instances of channel e(v, u) are alive at the same time. If π(u) < π(v), one fewer instance

of e is alive because u is fired before v in each iteration of the loop. �

Since we assume that tasks are implemented as function calls, the overhead in instruction

memory due to iteration overlapping is negligible. However, the channel memory require-

ment in processor pk is updated from ‖m(Ek)‖ to β(Ek) •m(Ek), where the bullet denotes

the dot product of two vectors. In other words, the memory requirement is updated from
∑

e∈Ek

m(e) to
∑

e∈Ek

β(e)m(e).

Corollary 5.6. In face of iteration overlapping, Equation 5.12 for memory require-

ment is updated to

(5.38) M = ‖m(V)‖ + β(E − C) • M(E − C)

5.3. Throughput-Memory Tradeoff

As mentioned in the problem statement, we are interested in a set of design points with

smooth throughput-memory tradeoff.

5.3.1. Tradeoff Bounds. Given an application task graph and its associated at-

tributes (e.g. workloads w and memory requirements m), task assignment and task sched-

uling (p and s), we proceed to highlight the quality bounds of the design points, i.e., the

smallest execution period and the smallest memory requirement that can be achieved via

iteration overlapping.

Theorem 5.7. For a given task assignment, the execution period cannot be smaller than

(5.39) EPmin = max
1≤k≤P

w(pk)

where w(pk) is the workload of processor pk which is the sum of its tasks’ workloads, i.e.,

w(pk) = ‖w(Vk)‖ =
∑

v∈Vk

w(v).

In our example, w(p1) = w(a)+w(b)+w(x1)+w(y1)+w(z1)+w(d) = 1+1+1+1+1+1 =

6 and w(p2) = w(x2) + w(y2) + w(c) + w(z2) = 1 + 1 + 3 + 1 = 6. Hence, EPmin = 6.

Proof. In steady state, each task is fired once in the periodic firing, and therefore, no

processor can repeat its steady state execution faster than its assigned workload. That is,

5.3. THROUGHPUT-MEMORY TRADEOFF 76

it takes at least w(pk) for processor pk to execute its task set, even without any blocks due

to data dependencies. Therefore, the maximum processor workload is a lower bound on the

periodic execution latency. �

Theorem 5.8. Given a task assignment and task schedule, there exist a valid iteration

overlap (λ, π) such that EP = EPmin.

Proof. Let us combine the given task schedules (intra-iteration schedules) sk : Vk →

{1, 2, . . . , |Vk|} into a global ordering of all tasks δ : V → {1, 2, . . . , |V |}, such that

(5.40)
∀v, u ∈ Vk , sk(v) < sk(u) : δ(v) < δ(u)

∀e(v, u) ∈ C : δ(v) < δ(u)

In our example, a, x1, b, y1, x2, y2, c, z2, z1, d would be the ordering given by δ, in which

δ(a) = 1, . . . , δ(d) = 10. Next, we assign

(5.41)

π(v) = s(v)

λ(v) =







λ(u) + 1 if e(v, u) ∈ C

|V | − δ(v) otherwise

We claim the above assignment for tuple (λ, π) satisfies both task scheduling and FIFO

scheduling constraints, and also, yields the execution period EPmin. Let us consider the

following lemma as part of the proof.

Lemma 5.9. Let wr denote a write task which is connected to a read task rd through a

channel e ∈ C, i.e., e(wr, rd) ∈ C. We have λ(wr) ≤ |V | − δ(wr).

The lemma holds because

(5.42)

e(wr, rd) ∈ C ⇒ δ(wr) < δ(rd)

⇒ δ(wr) ≤ δ(rd) − 1

⇒|V | − δ(wr) ≥ |V | − δ(rd) + 1

⇒|V | − δ(wr) ≥ λ(rd) + 1

⇒|V | − δ(wr) ≥ λ(wr)

5.3. THROUGHPUT-MEMORY TRADEOFF 77

Now, we resume the proof of Theorem 5.8. The above assignment for tuple (λ, π) yields

the execution period EPmin because it fully disentangles the execution of tasks from the

same periodic loop iteration. On all processors, for any channel e(v, u) ∈ Ek, i’th instance

of task v, i.e., vi, fires in an earlier iteration than ui, which means there would be no wait

times due to unavailability of data. Formally, we have

(5.43)
∀e(v, u) ∈ C ⇒ λ(v) = λ(u) + 1

⇒ λ(v) > λ(u)

and we also have

(5.44)

e(v, u) ∈ Ek ⇒ sk(v) < sk(u)

⇒ δ(v) < δ(u)

⇒|V | − δ(v)
︸ ︷︷ ︸

=λ(v)

> |V | − δ(u)
︸ ︷︷ ︸

≥λ(u)

⇒ λ(v) > λ(u)

Since v is not a write task, we have |V | − δ(v) = λ(v), and since u might or might not

be a write task, based on above lemma, we have |V | − δ(u) ≥ λ(u). Therefore, for any

channel, the producer task has a larger lead index (I).

This assignment satisfies the task scheduling constraint (Theorem 5.2) because as we

explained above for any sk(v) < sk(u) we have λ(v) > λ(u) (II). It also satisfies the FIFO

scheduling constraint (Theorem 5.4). Since π(v) = s(v), the given periodic task schedule

is not perturbed, and therefore, r = 0 in Theorem 5.4. Since λ(v) = λ(u) + 1, for all cut

channels e(v, u), we have

(5.45) ‖Λk′′,f‖ =
∑

cj∈Cf

λ(ck′′

j) =
∑

cj∈Cf

λ(ck′

j) + 1 = ‖Λk′,f‖ + |Cf |

and thus q = 1 (III). �

Corollary 5.10. Iteration overlapping enables implementing the application with the

optimal execution period of EP = EPmin, which gives the highest throughput.

Theorem 5.11. For a given scheduling and assignment of tasks, zero iteration overlap-

ping, i.e., λ(v) = 0 for all v ∈ V , results in the minimum memory requirement which is

5.3. THROUGHPUT-MEMORY TRADEOFF 78

given by

(5.46) Mmin = ‖M(v)‖ + ‖M(E − C)‖

Proof. Based on Theorem 5.5, β(e) = 1 for all channels if λ(v) = 0 for all tasks. Since

we always have β ≥ 1, this is the minimum possible value for β, and in Equation 5.38, the

term β(E − C) • M(E − C) is minimized to ‖M(E − C)‖. �

5.3.2. Generation of Competitive Design Points. In this section we present an

algorithm that generates a set of design points obtained using a corresponding set of valid

tuples (λ, π) with smooth throughput-memory tradeoff.

Gantt Chart Construction: First we explain a heuristic method for iteration over-

lapping which generates a valid tuple (λ, π) for a given EP ≥ EPmin, without excessive

overlapping of iterations4. The algorithm is explained with reference to the example in

Figure 5.5 where EP = EPmin = 6.

Let us view the time-periodic Gantt chart as the starting point. An iteration overlap-

ping can be thought of as a placement of tasks in time. Every task v ∈ V can be viewed

as an object of height w(v) which has to be placed in p(v)’s timeline, subject to the con-

straints. Once such an execution timeline is available, the corresponding tuple (λ, π) is

readily available.

Given task assignment and schedule, and EP ≥ EPmin, our algorithm constructs a

Gantt chart as the following. We visit the tasks in the reverse of the δ ordering (Theorem

5.8), and place them into their corresponding processor timeline (Figure 5.5.A). Specifically,

for every task v ∈ Vk, an object vi is placed as far down as possible in the execution timeline

pk, as long as it does not violate the following conditions

(5.47)
∀v, u ∈ Vk , sk(v) < sk(u) : t(vi) < t(ui)

∀e(v, u) ∈ C : t(vi) ≤ t(ui)

where t(vi) < t(ui) means vi is placed higher than, i.e., before, ui. For example in Figure

5.5.A, z2
i in column p2 can not be placed any lower than depicted in the figure because of

the placement of z1
i .

4The constructive proof of Theorem 5.8 will result in an implementation with unreasonably large memory requirement.

5.3. THROUGHPUT-MEMORY TRADEOFF 79

EP

di-2

P2P1

di-1

di

di-2

P2P1

di-1

z1i-1

di

z1i

di-2

P2P1

di-1

z2i-1z1i-1

di

z2iz1i

ci-1

y2i-1y1i-1

x2i-1di-2

P2P1

x2idi-1

z2i-1z1i-1

ci

y2iy1i

di

z2iz1i

di
1
zi(A)

ci-1

y2i-1y1i-1

x2i-1di-2

P2P1

x2idi-1

z2i-1z1i-1

bi

bi+1

ci

y2iy1i

di

z2iz1i

bi

ci-1

y2i-1y1i-1

x2i-1di-2

P2P1

x2idi-1

z2i-1z1i-1

bi

x1i

bi+1

x1i+1 ci

y2iy1i

di

z2iz1i

ci-1

ai

y2i-1y1i-1

x2i-1di-2

P2P1

x2idi-1

z2i-1z1i-1

bi

x1i

bi+1

x1i+1 ci

ai+1

y2iy1i

di

z2iz1i

ai

ci-1

ai

y2i-1y1i-1

x2i-1di-2

P2P1

x2idi-1

z2i-1z1i-1

bi

x1i

bi+1

x1i+1 ci

ai+1

y2iy1i

di

z2iz1i

(B)

2
zi

1
yi

1
xi

�

~
1
ss

~
2
ss

Figure 5.5. A) Construction of a time-periodic Gantt chart with EP =
EPmin = 6. The ordering δ is a, x1, b, y1, x2, y2, c, z2, z1, d. B) The chart

determines firing sequences Σ̃ss
k which is marked by black bars, and Σ̃ss

k

gives us the tuple (λ, π).

When an object vi is placed at a position t(vi), all positions with integral multiples of

EP time distance from vi are marked as unavailable (occupied with other instances of v),

which ensures the constructed Gantt chart has the desired steady state execution period.

In addition, visiting of the tasks in the reverse of the δ order and placing them without

violating the above condition ensure that the intra-iteration schedule is preserved, i.e., the

task scheduling constraint (Theorem 5.2) is satisfied.

Once the Gantt chart is constructed, calculation of the tuple (λ, π) is straight-forward.

The chart determines firing sequences Σ̃ss
k for all 1 ≤ k ≤ P . As defined in Section 5.2.3, Σ̃ss

k

gives us the λ(v) and π(v) of all tasks v ∈ Vk. In Figure 5.5.B, Σ̃ss
1 = y1

i , ai+1, x
1
i+1, bi+1, z

1
i , di,

and hence, λ(a) = 1 because ai+1 is fired in iteration i of Σ̃1, and π(a) = 2 because a is the

second task in Σ̃ss
1 .

5.3. THROUGHPUT-MEMORY TRADEOFF 80

EP 6 7 8 9

13 0

10 0

70

(C)

ci-1

ai

...

x2idi-1

z2i-1z1i-1

bi

x1i

bi+1

x1i+1 ci

ai+1

y2iy1i

di

z2iz1i

ci-1x1i

ai

di-1

...

x2ibi

z2i-1z1i-1

x1i+1

ai+1 ci

y2iy1i

di

z2iz1i

ci-1ai
z2i-1z1i-1

di-1

z2iz1i
di

...

x2ibi

x1i

ai+1

ci

y2iy1i

EP= 6 EP= 7 EP= 8 EP= 9(A)

1

1

2

1

2

1

1

1

1

1

2

1

1

1

1

1

2

1

1

1

1

1

1

1

z d

a x

b d

b y

a d

a b

9010 010 013 0M (E
1
)

9876EP (B)

M
(E

1)

ai

di-1

ci

x1i

...

bi
y2iy1i

z2iz1i
di

x2i

z2i-1z1i-1

Figure 5.6. A) The Gantt charts with different execution periods EP .

The black bar marks Σ̃ss
1 . B) Channel memory requirement of p1. C) The

generated set of competitive design points.

The example in Figure 5.5 satisfies the FIFO scheduling constraint (Theorem 5.4), but

the above procedure might result in a tuple (λ, π) which does not satisfy the constraint. This

is rare in practice because graph partitioning algorithms employed for task assignment often

split a given task graph into a set of connected sub-graphs. If the constraint is not satisfied

for a FIFO f from processor pk′ to pk′′ , we adjust π and λ values of the corresponding read

tasks of f , i.e., tasks ck′′

j for all cj ∈ Cf . Specifically, we look at the π ordering of the write

tasks ck′

j and reorder the read tasks to match this order. Next, we increase the λ values of

the read tasks as required to ensure both constraints are satisfied. Note that this correction

procedure might change the execution period. Therefore, for a given starting EP , the above

Gantt chart construction heuristic provides a tuple (λ, π) and its corresponding execution

period EP ′ which might be different from EP in rare cases.

Design Points: The required memory (M) for a given iteration overlapping (λ, π) can

be calculated using Equation 5.38. Hence, the above Gantt chart construction procedure

is repeated for different values of EP , in order to generate a set of design points (EP ′,M)

with competitive throughput memory characteristics (Figure 5.6.A). One can start from

EPmin and increment EP until the memory requirement M reaches Mmin.

However, not all EP values need to be tried out. We increase EP in discrete steps that

might be larger than 1. Based on Equation 5.38, the memory requirement M is reduced

when at least one of the λ(v) or π(v) values is changed. At each step EP is increased by

the minimum amount that is likely to perturb the iteration overlap generated by the above

5.4. EMPIRICAL EVALUATION 81

Gantt chart construction heuristic. In our example, all EP values are tried out. Figure

5.6.B shows the calculation of channel memory requirement of processor p1 as an example.

Finally, we filter the set of design points (EP ′,M) and only keep the ones with smooth

throughput-memory tradeoff, i.e., the design points whose memory requirements are reduced

with increase in execution period (Figure 5.6.C).

5.4. Empirical Evaluation

To demonstrate the merits of our idea, we experimented with the benchmark appli-

cations listed in Figure 5.7. For every application, we consider 4, 8 and 16 core target

platforms. Given the application and number of cores, we first perform task assignment

and task scheduling, and then, apply our iteration overlapping method in synthesizing the

parallel software codes as described in Section 5.3.2. In other words, we synthesize different

sets of software codes for different execution period values.

Throughput of the synthesized codes are measured on the following FPGA-prototyped

system. Each processor is an Altera NiosII/f core with 8KB instruction cache and 32KB

data cache. The communication network is a mesh which connects the neighbor processors

with FIFO channels of depth 1024. The processors use a shared DDR2-800 memory, but

they only access their own region in this memory, i.e., they communicate only through the

FIFO channels. The compiler is gcc in Altera NiosII IDE with optimization flag -O2. The

memory requirements are measured by compiling the applications with gcc in Altera Nios

IDE [Nio].

Experiment Results: The measurement results are shown in Figure 5.8. The black

curve is the tradeoff points between execution period (X axis) and memory requirement

(Y1 axis), for the benchmark applications. Both X and Y1 axis are normalized against

EPmin and Mmin, respectively. The gray curve (Y2 axis) is the average value of λ which

Benchmark Name |V | |E|
Advanced Encryption Standard (AES) 93 102

Block Matrix Multiplication 98 121

Fast Fourier Transform (FFT) 80 110

Parallel Merge Sort 96 126

Figure 5.7. Benchmark applications. |V | and |E| denote the number of
task graph vertices and edges.

5.5. RELATED WORK AND CHAPTER SUMMARY 82

characterizes the amount of overlapping at every design point. When avg(λ) = 0, we have

λ(v) = 0 for all tasks, i.e, no overlapping.

We observe that memory requirements are decreased with smaller throughput values,

i.e., larger execution periods. Our experiments confirm that the set of tradeoff points do not

show excessive increase in memory requirement when throughput is increased. For example,

the AES application on a 64-core target (Figure 5.8.A, right) shows less than 15% increase

in memory requirment when throughput is increased by a factor of 11, i.e., the execution

period without iteration overlapping is 11 times the minimum execution period EPmin. On

average, throughput is increased by a factor of 3.4× for only a 30% increase in memory

requirement.

As we see in the figure, our heuristic algorithm finds a set of design points with far

less memory requirement comparing to the excessive overlapping of Theorem 5.8. We also

observe that the number of tradeoff points decreases with increasing number of cores. This

is because fewer tasks are assigned to each processor, hence there is less room for our

algorithm to explore the tradeoff points.

5.5. Related Work and Chapter Summary

The problem of iteration overlapping is closely related to that of software pipelining,

which is utilized in conventional compilers [Rau94, RGSL96] and high-level synthesis

frameworks [Mic94, BWH+03]. However, traditional software pipelining is designed for

only one processor and does not consider the effect of inter-processor communications in

overlapping of the iterations.

Gordon et. al. [GTA06] proposed an iteration overlapping method, a.k.a, coarse-grain

stream software pipelining, in which execution of dependent filters (tasks) are completely

decoupled by being assigned to different iterations of the stream program (different λ value

for each task), even if they reside in the same processor. Kudlur and Mahlke [KM08] pro-

posed a better algorithm for decoupling of task executions, in which the tasks are scheduled

in a flat single appearance topological order, and assigned to stages larger than or equal to

their producer stage (smaller than or equal to the producer λ value).

The iteration overlapping method discussed in this chapter considers the constraints

which exist for targets with FIFO-based point-to-point interprocessor communication, rather

5.5. RELATED WORK AND CHAPTER SUMMARY 83

A) Advanced Encryption Standard (AES) :

4 cores17.49

1.00

1.20

1.40

1.60

1.80

2.00

1.0 1.3 1.6 1.9 2.2

Execution Period

M
e

m
o

ry

0.00

0.20

0.40

0.60

0.80

1.00

a
v

g
(

)

16 cores10 .44

1.00

1.30

1.60

1.90

2.20

2.50

1.0 2.0 3.0 4.0 5.0 6.0

Execution Period

M
e

m
o

ry

0.00

0.70

1.40

2.10

2.80

3.50

a
v

g
(

)

64 cores1.78

1.00

1.10

1.20

1.30

1.40

1 3 5 7 9 11

Execution Period

M
e

m
o

ry

0.00

1.00

2.00

3.00

4.00

a
v

g
(

)

B) Matrix Multiplication :

4 cores2 8 .5 1

1.00

1.10

1.20

1.30

1.40

1.50

1.0 1.1 1.2 1.3 1.4 1.5

Execution Period

M
e

m
o

ry

0.00

0.20

0.40

0.60

0.80

1.00

a
v

g
(

)

16 cores15 .2 3

1.00

1.02

1.04

1.06

1.08

1.10

1.0 1.1 1.2 1.3 1.4 1.5

Execution Period

M
e

m
o

ry

0.00

0.05

0.10

0.15

0.20

0.25

a
v

g
(

)

64 cores7.3 1

1.00

1.01

1.02

1.03

1.0 1.4 1.8 2.2 2.6 3.0

Execution Period

M
e

m
o

ry

0.00

0.20

0.40

0.60

a
v

g
(

)

C) Fast Fourier Transform (FFT)

4 cores18 .2 7

1.00

1.40

1.80

2.20

2.60

1.0 1.2 1.4 1.6 1.8 2.0

Execution Period

M
e

m
o

ry

0.00

0.50

1.00

1.50

2.00

a
v

g
(

)

16 cores5 .0 0

1.00

1.10

1.20

1.30

1.40

1.50

1.0 2.0 3.0 4.0

Execution Period

M
e

m
o

ry

0.00

0.60

1.20

1.80

2.40

3.00

a
v

g
(

)

64 cores2 .8 3

1.00

1.04

1.08

1.12

1.16

1.20

1.0 1.8 2.6 3.4 4.2

Execution Period

M
e

m
o

ry

0.00

0.50

1.00

1.50

2.00

2.50

a
v

g
(

)

D) Parallel Merge Sort

4 cores19.8 5

1.00

1.10

1.20

1.30

1.40

1.50

1.0 1.2 1.4 1.6 1.8

Execution Period

M
e

m
o

ry

0.00

0.10

0.20

0.30

0.40

0.50

a
v

g
(

)

16 cores14.96

1.00

1.05

1.10

1.15

1.20

1.0 1.3 1.6 1.9 2.2

Execution Period

M
e

m
o

ry

0.00

0.10

0.20

0.30

0.40

a
v

g
(

)

64 cores6 .8 3

1.00

1.04

1.08

1.12

1.16

1.0 1.2 1.4 1.6 1.8

Execution Period

M
e

m
o

ry

0.00

0.10

0.20

0.30

0.40

a
v

g
(

)

Figure 5.8. Black curve: tradeoff points between execution period (X axis)
and memory requirement (Y1 axis), for the benchmark applications. Both
X and Y1 axis are normalized against EPmin and Mmin, respectively. Gray
curve: the average value of λ (Y2 axis). The three columns show the results
for 4, 8 and 16-core targets. The number written on top of each chart is the
memory requirement for the excessively overlapped instance as described in
Theorem 5.8.

5.5. RELATED WORK AND CHAPTER SUMMARY 84

than router or DMA based communications. In addition, our method supports overlapping

of iterations for an arbitrary flat single appearance schedule of tasks, rather than topologi-

cal ordering. Future directions include overlapping of the iterations for any arbitrary task

schedule, rather than only single appearance.

85

CHAPTER 6

Throughput Scaling via Malleable Specification

In principle, specifying the application as a set of tasks and their dependencies is meant

to only model the functional aspects of an application, which should enable seamless porta-

bility to new platforms by fresh platform-driven allocation and scheduling of tasks and

their executions. However, such specifications are rather rigid in that some non-behavioral

aspects of the application are implicitly hard coded into the model at design time. Con-

sequently, the task assignment and task scheduling processes are likely to generate poor

implementations when one tries either to port the application to different platforms, or to

explore implementation design space on a range of platform choices [SVCDBS04]. The lim-

itations of conventional dataflow-based models with portability, scalability and subsequently

the ability to explore implementation tradeoffs (e.g., with respect to number of cores) have

become especially critical with availability of platforms with a large number of processor

cores, which can dedicate a wide range of resources to an application [TCM+08, BEA+08].

As an example, consider the merge sort dataflow network, which is composed of actors

for splitting the data into segments, sorting of data segments using a given algorithm (e.g.,

quicksort), and merging of the sorted segments into a unified output stream. A specific

instance of the sort network would have rigid structural properties, such as number of sort

actors or fanin degree of merge actors. The choice of structure, although implicitly hard

coded into the specification, is orthogonal to application’s end-to-end functional behavior.

It is intuitively clear that the optimal network structure would depend on the target plat-

form, and automatic software synthesis from a rigid specification is bound to generate poor

implementations over a range of platforms.

Our driving observation is that the scalability limitation of software synthesis from rigid

dataflow models could be addressed if the specifications were sufficiently malleable at com-

pile time, while maintaining functional consistency. We present an example manifestation

6.1. MOTIVATING EXAMPLE 86

of the idea, dubbed FORMLESS, which extends the classic notion of dataflow by abstract-

ing away some of the unnecessary structural rigidity in the model. In particular, malleable

aspects of the dataflow structure are modeled using a set of parameters, referred to as the

forming vector. Assignment of values to forming set parameters instantiates a particular

structure of the model, while all such assignments lead to the same end-to-end functional

behavior. A simple example of a forming set parameter is the fanin degree of merge actors

in the sort example.

Our approach opens the door to design space exploration methodologies that can ham-

mer out a FORMLESS specification to form an optimized version of the model for the tar-

get platform. The “formed” model can be subsequently passed onto conventional allocation

and scheduling processes to generate a quality parallel implementation. We also present

such a design space exploration scheme that determines the forming set using platform-

driven profiles of application tasks. Experimental results demonstrate that FORMLESS

yields substantially improved portability and scalability over conventional dataflow model-

ing [HG11b, HFC+11].

6.1. Motivating Example

Figure 6.1.A shows an example abstract target platform with four processors. Figure

6.1.B illustrates the SDF graph for an example streaming sort application, which sorts 100

data tokens per invocation. The scatter task reads 100 tokens from the input stream, and

divides them into segments of 25 tokens that are passed onto the four sort tasks. After

the four segments are sorted by the sort tasks, two merge tasks combine the four segments

into two larger sorted data segments of size 50. Finally, another merge task combines the

two segments and generates the sorted output stream. A sample task assignment is shown

in Figure 6.1.C, and the generated parallel software modules are shown in Figure 6.1.D.

To motivate the underlying idea of FORMLESS, we investigate the scaling of throughput

when platforms with different number of processors are targeted. Let us assume that the

sort task implements the quicksort algorithm.

An immediate observation is that the example task graph cannot readily utilize many

(more than 8 in the case of depicted task graph) processors due to the limited concurrency

in the specification. At the other extreme, the throughput of the synthesized software is

6.1. MOTIVATING EXAMPLE 87

void scatter(int m, // msort.h
int* x,x1,x2,x3,x4){...}

void sort(int m,int* x){...}
void merge(int m,

int* x1,x2,y){...}

#include msort.h; // P 4.C
int x3[25],x4[25],y1[50];
int y2[50],y3[100];
while()
for i=1:25 x3[i]=read(P3);
for i=1:25 x4[i]=read(P3);
merge(50,x3,x4,y2);
for i=1:50 y1[i]=read(P2);
merge(100,y1,y2,y3);
for i=1:100 write(y3,out);

#include msort.h; // P 2.C
int x1[25],x2[25];
int y1[50];
while()
for i=1:25 x2[i]=read(P1);
sort(25,x2);
for i=1:25 x1[i]=read(P1);
merge(50,x1,x2,y1);
for i=1:50 write(y1[i],P4);

#include msort.h; // P 3.C
int x3[25],x4[25];
while()
for i=1:25 x3[i]=read(P1);
for i=1:25 x4[i]=read(P1);
sort(25,x3);
sort(25,x4);
for i=1:25 write(x3[i],P4);
for i=1:25 write(x4[i],P4);

#include msort.h; // P 1.C
int x[100],x1[25],…,x4[25];
while()
for i=1:100 x[i]=read(in);
scatter(100,x,x1,…,x4);
for i=1:25 write(x2[i],P2);
for i=1:25 write(x3[i],P3);
for i=1:25 write(x4[i],P3);
sort(25,x1);
for i=1:25 write(x1[i],P2);

(A)

sort

me rg e

sc a tte r

M
2

M
1

S
1

S
2

S
3

S
4

X(B) (C)
25

5 0
M
3

10 0 (D)

M
2

M
1

M
3

S
1

S
2

S
3

S
4

Xp roc .

1

p roc .

2

p roc .

3

p roc .

4

10 0

25

Figure 6.1. A) Example platform. B) Sort application modeled as a SDF.
C) Tasks are assigned to processors (color coded). D) Synthesized software
modules. Outputs of tasks Si and Mi are implemented with arrays xi and
yi, respectively.

going to be poor when one processor is targeted, compared to eliminating the scatter and

merge tasks and running a single sort task (i.e., the quicksort algorithm) on the entire input

stream 1. This is partly because the overhead of inter-task communication is only justified if

sufficient amount of parallelism exists in the platform. Intuitively, increasing concurrency in

the task graph specification facilitates utilization of more parallel resources and potentially

increases the potential for improving performance via load balancing between processors,

however, it comes at the cost of degraded performance when platforms with fewer processors

are targeted.

Having made this observation, our idea is to specify the tasks and their composition

using a number of parameters. Adjustment of parameters enables “massaging” the structure

of the task graph to fit the target architecture, while all candidate task graphs deliver the

same end to end functionality.

Figure 6.2 sketches the idea for the example sort application in which fanout degree

of the scatter task and fanin degree of the merge task are parametrically specified. The

number of tasks, their type and composition, as well as their data production rates are

1The discussion does not pertain to sorting of large databases which does not entirely fit in the memory.

6.2. FORMLESS: A MALLEABLE DATAFLOW MODEL 88

(C)(B) (D)

sort(m,x[])
quicksort(x[],1,m)

scatter(p,m,x[]
,x1[],x2[],�,xp[])

for i=1:m
j= i/p
xj[i%p]= x[i]

merge(q,m,x1[],x2[],�,xq[],y[])

for j=1:q dj=1
for i=1:m

j=index_of_min(x1[d1],�,xq[dq])
y[i]=xj[dj]
dj++

(A) sort(m): m

m

me rg e (q,m): m÷q

m

sc a tte r(p,m): m

m÷p

N

N

sort(N)

sc a tte r(8,N)
N÷8

me rg e (2,N)

me rg e (2,N÷2)

me rg e (2,N÷4)

N÷4

N÷2

sort(N÷8)

N÷8

N

N

N÷3
sc a tte r(3,N)

me rg e (3,N)
N÷3

sort(N÷3)

N

N

Figure 6.2. FORMLESS specification of the sort example: A) Actor spec-
ifications. B-D) Example instantiations.

immediate functions of the two scatter-fanout and merge-fanin parameters. Three example

instances of the FORMLESS graphs are shown in Figure 6.2.

6.2. FORMLESS: A Malleable Dataflow Model

6.2.1. Formalism. We make the key observation that SDF specifications are struc-

turally rigid. Such task graphs do not fully live up to the intended promise of separating

functional aspects of the application from implementation platform, and thus, fail to deliver

efficient portability and scalability with respect to number of processors in the platform.

To address the portability and scalability limitations, not only application specification

has to be sufficiently separated from implementation platform, but it also has to admit

platform-driven transformations and optimizations.

We propose raising the level of abstraction in specifications to eliminate the rigid struc-

ture of the task graph, while preserving its functional behavior. Our approach is to require

application designers to specify the tasks and the structure of the task graph using a number

of parameters, referred to as the forming vector. Specifically, a forming vector Φ is defines

as

(6.1) Φ = (φ1, φ2, . . . , φ|Φ|)

where φj is a forming parameter with domain δj , i.e., φj is a member of a set δj. Hence,

domain of the forming vector Φ is equal to

(6.2) ∆ = δ1 × δ2 × . . . × δ|Φ|

6.2. FORMLESS: A MALLEABLE DATAFLOW MODEL 89

We extend the definition of a task α such that input ports, output ports and data

transformation function of α are all specified as functions of the underlying parameters in

Φ. In other words, task α is defined as the tuple

(6.3) ∀Φ ∈ ∆α : α(Φ) =
(
Inα(Φ), Outα(Φ), Fα(Φ)

)

For example, the merge task in Figure 6.2.A is defined based on the forming vector

Φ = {q,m}. The function Inmerge(q,m) specifies q input ports of rate m
q , and function

Outmerge(q,m) specifies one output port of rate m. The data transformation function

Fmerge(q,m) specifies a mergesort algorithm which combines q sorted input arrays of size

m
q into a single sorted output array of size m. In this example, ∆merge = {(q,m) | m ≥

2, q ≥ 2,m mod q = 0}.

We also extend the definition of task graph G(V,E) such that tasks (V) and channels

(E) are specified as functions of the underlying parameters in Φ. Formally, task graph G is

defined as the tuple

(6.4) ∀Φ ∈ ∆G : G(Φ) =
(
VG(Φ), EG(Φ)

)

VG(Φ) is a function which specifies the set of tasks in G based on a given forming vector

Φ, and is formally defined as

(6.5) VG(Φ) =
{
α1(Φ1), α2(Φ2), . . . , α|V |(Φ|V |)

}

where αi(Φi) is an instance of task αi which is formed based on forming vector Φi, and both

αi and Φi are determined based on the given Φ. For instance, the task graph in Figure 6.2.B

is specified based on forming vector Φ = {p, q,m} = {3, 3, N}, and function VG specifies

the set of tasks as

(6.6)
VG(3, 3, N) =

{
scatter(3, N), sort(

N

3
),

sort(
N

3
), sort(

N

3
),merge(3, N)

}

in which, for example, task merge(3, N) is an instance of merge(q,m) =
(
Inmerge(q,m),

Outmerge(q,m), Fmerge(q,m)
)
, where {q,m} = {3, N}.

6.2. FORMLESS: A MALLEABLE DATAFLOW MODEL 90

Similarly, EG(Φ) is a function which specifies the set of channels in G based on the

forming vector Φ, and is formally defined as

(6.7) EG(Φ) =
{
(prd, cns) | prd ∈ Outαi

(Φi), cns ∈ Inαj
(Φj)

}

where (prd, cns) denotes a channel from an output port prd of some task αi to an input

port cns of some task αj .

We would like to stress that our primary objective in this work is to demonstrate

the merit of the idea and scalability of malleable specifications. In our scheme, it is the

programmer’s duty to define the ports, task computations and graph composition based

on the parameters. Furthermore, he has to ensure that every assignment of values from

the specified domain ∆G to the forming vector Φ results in the same functional behavior.

This tends to be straight forward since tasks perform the same high-level function under

different parameters (e.g. scattering, sorting or merging in the example of Figure 6.2).

6.2.2. Higher-Order Language. Development of a formal higher-order program-

ming language involves many considerations that are beyond the scope of this work [CGHP04,

Tah03, Cat06]. However, in this section we present an example realization of the general

idea that we have developed.

Figure 6.3.A presents the prototype for specifying task and application task graph based

on a set of parameters. The task specification starts with a list of forming parameters and

their type. The interface section specifies the set of input and output ports of the task,

and the function section specifies its data transformation function, all based on the given

parameters.

Similarly, application specification also starts with a list of forming parameters. The

interface section is the same as task interface. In a composition section, the tasks are

instantiated by assigning the corresponding parameters using the instantiate construct.

The channels are instantiated using the connect construct which connects ports of two

tasks.

Figure 6.3.B shows the code for our previously mentioned sort application. For example,

the merge task is specified with two parameters m and q. As we see the number and rate

of input ports in this task is defined using a for loop. In general we allow a rich set of

6.3. EXPLORATION OF FORMING PARAMETER SPACE 91

task Scatter(int M, // input length
int P, //fan-out degree

){
...

}

task Sort (int M //array length
){

interface {
input unsorted_array (M);
output sorted_array (M);

}
function {
//the quicksort algorithm

}
}

task Merge (int M, // output length
int Q, //fan-in degree
){

interface {
output merged_array (M);
for (i=0; i < Q; i++)
input sub_array[i] (M/Q);

}
function {
//the mergesort algorithm

}
}

application MergeSort(int P,//scatter fan-out
int Q //merge fan-in

){
interface {
input input_array (N);
output output_array (N);

}
composition {
if (P==1) ...
else {
//tasks:
instantiate Scatter scatter (N, P);
for (i=0; i < P; i++)
instantiate Sort sort[i] (N/P);

int D = log(P,Q);
for (d=D-1; d >=0; d--) for (i=0; i < Q^d; i++)
instantiate Merge merge[d][i] (N/Q^d, Q);

//channels:
connect (input_array, scatter.input_array);
for (i=0; i < P; i++)
connect (scatter.output_array[i]

, sort[i].unsorted_array);
connect (sort[i].sorted_array

, merge[D-1][i/Q].sub_array[i%Q]);
for (d=D-1; d > 0; d--) for (i=0; i < Q^d; i++)
connect (merge[d][i].merged_array

, merge[d-1][i/Q].sub_array[i%Q]);
connect (merge[0][0].merged_array, output_array);
}

}}

application AppName (//list of parameters
...

){
interface {

//list of input and output ports
...

}
composition {

//actors:
instantiate ActorName ActorID (ParamValue1, ...);
...
//channels:
connect (ActorID.PortName, ActorID.PortName);
...

}
}

task ActorName (//list of parameters
Type1 ParamName1,
Type2 ParamName2,
...){

interface {
//list of input and output ports
input InputPortName1(PortRate);
input InputPortName2(PortRate);
...
output OutputPortName1(PortRate);
...

}
function {
//data transformation function

}
}

(A)

(B)

Figure 6.3. A) Prototype for specifying task and application. B) An ex-
ample malleable specification for the sort application in Figure 6.2.

programming constructs such as for and if-else in order to provide enough flexibility in

specifying the tasks based on the given forming parameters.

6.3. Exploration of Forming Parameter Space

To examine the merits of FORMLESS, we developed a design space exploration (DSE)

scheme whose block diagram is depicted in Figure 6.4. The DSE instantiates a platform-

driven task graph G(Φopt) from a given FORMLESS specification by optimizing the forming

vector Φ. Central to the quality of the DSE are high-level estimation algorithms for fast

assessment of the throughput of a specific instance of the task graph.

6.3.1. Task Profiling. The wokload associated with a task is composed of two com-

ponents: computation workload and communication-induced workload. Since tasks are

defined parametrically, their computation workload depends on the values of the relevant

6.3. EXPLORATION OF FORMING PARAMETER SPACE 92

.C
Files

Manycore

S im u lation

Instantiated
SDF Graph

C od e

G eneration

P roces s or

A s s ig nm ent

T as k

A s s ig nm ent

T as k

S ch ed u ling

Manycore
Model

W ork load

E s tim ation

S D F G rap h

A nalys is

Binary
C om p iler

e.g ., g cc

Manycore

P latform

Attributes

Design Space Exploration

T as k

A s s ig nm ent

T as k

P rofiling

T h rou g h p u t

E s tim ation

T as k G rap h

F orm ation

rep eat ?
yes

FORMLESS

Application

no

Figure 6.4. Design space exploration for platform-driven instantiation of
a FORMLESS specification.

forming parameters. In addition, computation workload is inherently input-dependent, due

to the strong dependency of the tasks’ control flow with their input data. For example, the

runtime of the quicksort algorithm on a list depends on the ordering of the numbers in the

list. The communication-induced workload exists if some of the producers (consumers) of

the data consumed (produced) by the task are assigned to a different processor.

We take an empirical approach to characterization of computation workload. We mea-

sure the execution latency of several instances of the tasks (based on the forming parameters)

on the target processor. For each case, we profile the runtime for several randomly gen-

erated input streams to average out the impact of input-dependent execution times. The

data is processed via regression testing to obtain latency estimates for all parameter values.

Hence, for a task α(Φ), the profiling data provides DSE with a computation workload Wα.

In addition, for a channel (α, α′) with communication volume N(α,α′), the communication-

induced workload of producer and consumer tasks are analytically characterized as Wwrite×

N(α,α′) and Wread×N(α,α′), respectively. Wwrite and Wread are the profiled execution latency

of platform communication operations.

6.3. EXPLORATION OF FORMING PARAMETER SPACE 93

6.3.2. Task Graph Formation. Formation of a task graph is essentially assignment

of valid values to the forming parameters. Any such assignment implies a specific instan-

tiation, which can be passed onto subsequent stages for quality estimation. Our current

DSE implementation exhausts the space of forming vector parameters by enumeration, due

to the manageable size of the solution space in our testcases, and quickness of subsequent

solution quality estimation. In principle, high-level quality estimations can analyze per-

formance bottlenecks to provide feedback and to guide the process of value assignment to

forming set parameters. Note that our primary objective in this chapter is to demonstrate

the scalability of malleable specifications, and not development of a sophisticated DSE.

6.3.3. Task Assignment. Task assignment is a prerequisite to application through-

put estimation, and quantifying the suitability of a candidate task graph for a target plat-

form. Tasks’ computations should be distributed among processors as evenly as possible

while inter-processor communication is judiciously minimized. This can be modeled as a

graph partitioning problem, in which a graph G(V,E) is cut into a number of subgraphs

Gk(Vk, Ek), one for each processor pk. We employ METIS graph partitioning package

[KK98] for this purpose because our primary focus is to quickly generate solutions to en-

able integration within the iterative DSE flow. Every vertex (task) α ∈ V is assigned a

weight Wα which denotes its computation workload, and every edge (α, α′) is assigned a

weight of N(α,α′) which denotes its communication volume.

Normally, the onchip network of a manycore system allows all processors to communi-

cate to one another. However, in some cases only neighbor processors may communicate due

limited communication resources in the network architecture. In such a case, the in-degree

and out-degree of partitions need to be limited, i.e., the number of processors that a pro-

cessor reads from or write to should be limited. Otherwise, the processor assignment step

is guaranteed not to be able to map the task assignment solution to the target manycore

system.

We consider a limit Dmax as a constraint on the in-degree and out-degree of every

partition. The partitioning solution from METIS needs to be modified to respect this

constraint, if needed. Let Din,k and Dout,k denote the in-degree and out-degree of partition

k, respectively. We employ the following method in adjusting the task assignment solution

6.3. EXPLORATION OF FORMING PARAMETER SPACE 94

such that

(6.8) ∀1 ≤ k ≤ P : Din,k ≤ Dmax and Dout,k ≤ Dmax

METIS solution is iteratively modified by moving one task at a time from one partition

to another. In each iteration, first a list of candidate moves are constructed and then

the best candidate is selected. The details involved in each iteration are as follows. The

partitions that violate the constraints are added into a black list. A cut edge e(v, u) ∈ C

from task v in a black listed partition p(v) to task u in another partition p(u), forms a

candidate move, in that task v is moved from partition p(v) to p(u). Next, the best move

is selected from the candidate list. The criteria for selection is to assume the move is

applied, calculate a cost vector, and then select the move with the least cost vector. The

elements in the cost vector are: 1) the number of processors that violate the constraints, 2)
∑

1≤k≤P

min{0, Din,k −Dmax}+min{0, Dout,k −Dmax}, which is a more quantitative measure

of how much the constraints are violated, 3) the workload of maximally loaded partition, 4)

sum of the workloads of the three maximally loaded partitions, and 5) sum of the workloads

of all partitions. A cost vector x = (x1, x2, x3, x4, x5) is smaller than y if and only if x1 < y1,

or, x1 = y1 and x2 < y2, or, x1 = y1 and x2 = y2 and x3 < y3, etc. After the move with the

least cost selected, it is applied to the task assignment solution, and the entire procedure

repeats. This iterative improvement is repeated 100 times, upon which, if the solution still

violates the constraint, the corresponding forming vector which formed the task graph is

discarded.

6.3.4. Throughput Estimation. For typical FIFO channels with small latency (rela-

tive to processors’ execution period), the communication overhead only appears as communication-

induced workload of write and read tasks on processors. That is, the workload of a processor

can be estimated as:

(6.9)

Wp =
∑

α∈Vp

Wα

+ Wread ×
∑

α/∈Vp,α′∈Vp

N(α,α′)

+ Wwrite ×
∑

α∈Vp,α′ /∈Vp

N(α,α′)

6.4. EMPIRICAL EVALUATION 95

where Wread and Wwrite denote the execution latency of platform read and write system

calls. The last two terms indicate communication-induced workload on p. We use workload

of the slowest processor to estimate the throughput. Formally

(6.10) Throughput = 1 ÷ max
1≤p≤P

Wp

For a given task assignment, throughput of a candidate solution depends on the buffer

sizes of the platform FIFO channels [SGB08], as well as the firing schedule of the tasks

that are assigned to the same processor. Note that the above equation only provides a

quick estimate for the DSE. In chapter 5, we proposed a method which overlaps different

iterations of the application execution, and hence, reorders the execution of tasks such

that throughput is equal to the above estimate for systems with large-enough FIFO buffers.

Intuitively, large buffers disentangle the steady state execution of processors at which point,

the throughput of the system is determined by the slowest processor.

For purpose of DSE high-level estimations, we assume the interconnection network has

enough buffering capacity to disentangle steady state execution of processors. However, the

communication-induced workload is accurately modeled as discussed above. Note that we

accurately simulate the impact of interconnect limited buffer size in our final experimental

evaluations, which are performed using synthesized software from FORMLESS models (Sec-

tion 6.4). The buffers are only assumed to be large during DSE to enable fast estimation

in the exploration phase.

6.4. Empirical Evaluation

6.4.1. Application Case Studies. To demonstrate the merits of our idea, we exper-

iment with low-density parity check (LDPC), advanced encryption standard (AES), fast

fourier transform (FFT), parallel merge sort (SORT) and matrix multiplication (MMUL)

applications. Appendix A presents the code for malleable specification of the applications

based on the following discussion.

Low-Density Parity Check: A regular LDPC code is characterized by an M × N

parity check matrix, called the H matrix. N defines the code length and M is the number

of parity-check constraints on the code (Figure 6.5.A). Based on matrix H, a Tanner graph

6.4. EMPIRICAL EVALUATION 96

1

0

0

0

1

0

V
9

1

0

0

0

0

1

V
10

0

0

0

1

1

0

V
11

C
3

001100010

C
4

101001100

C
5

110100001

C
6

000001010

1

1

V
5

0

0

V
4

0

1

V
3

0

0

V
2

1

0

V
1

C
2

C
1

0

0

V
12

0

1

V
8

0

0

V
7

0

0

V
6 (A) (B)

V
1-12

C
1-6

unrolled 6 times

(C)

(D) (E) V
1-6 C�

1-6

C�
1-6V

7-12

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

V
12

C
1

C
2

C
3

C
4

C
5

C
6

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

V
12

C�
1

C�
3

C�
2

C�
4

C�
6

C�
5

C�
1

C�
3

C�
2

C�
4

C�
6

C�
5

Figure 6.5. LDPC application: A) Sample H matrix. B) Tanner graph.
C) Task graph. Row-Split LDPC based on [MTB09, Moh10], split factor
φ = 2 : D) Tanner graph. E) Task graph.

is defined which has M check nodes and N variable nodes. Each check node Ci corresponds

to row i in H and each variable node Vj corresponds to column j. A check node Ci is

connected to Vj if Hij is one (Figure 6.5.B). The input data is fed to the variable nodes,

and after processing goes to the check nodes and again back to the variable nodes. This

process repeats R times, where R depends on the specific application of the LDPC code.

In practice, the H matrix has hundreds or thousands of rows and columns, and therefore,

given the complexity of edges in the Tanner graph, we decided not to use this graph as

the task graph for software implementation. In fact, direct hardware implementation of the

Tanner graph is also not desired because a huge portion of the chip area would be wasted

only for routing resources [MTB09].

We construct the task graph as the following. The variable and check nodes are collapsed

into single nodes, and subsequently, the graph is unrolled R times (Figure 6.5.C). We

experiment with the LDPC code used in 10GBASE-T standard, where the matrix size is

384 × 2048 and R = 6.

In order to have a malleable specification, we decided to employ the Row-Split method

which is a low-complexity message passing LDPC algorithm and is originally developed

for hardware implementation [MTB09, Moh10]. In this method, in order to reduce the

complexity of the edges, the Tanner graph is generated while the rows are split by a factor

of φ = 2, 4, 8 or 16. As shown in Figure 6.5.D for φ = 2, the variable nodes are divided

into φ = 2 groups, V1, . . . , VN
2

and VN
2

, . . . , VN , and each check node Ci is split into φ = 2

nodes C ′
i and C ′′

i . The corresponding task graph is shown in Figure 6.5.E, where additional

6.4. EMPIRICAL EVALUATION 97

ark s u b s h f m ix ark s u b s h f ark�
1 6 1 6

(A) re p e ate d 9 tim e s

ark

s u b

s h f

m ix ark ark�
1 6 1 6

(B)

s u b

s u b

s u b

s h f

4
8

4 s u b

s h fs u b

s u b

s u b

s h f

4
8

4

1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6

1 6

re p e ate d 9 tim e s

Figure 6.6. AES application: A) Φ = (1, 1, 1, 1) B) Φ = (4, 2, 1, 1).

synchronization nodes are required for the check nodes. For further details on the Row-Split

method refer to [MTB09, Moh10].

Advanced Encryption Standard: The AES is a symmetric encryption/decryption

application which performs a few rounds of transformations on an stream of 128-bit data

(4 × 4 array of bytes). The number of rounds depends on the length of the key which is

10 for 128-bit keys. As shown in Figure 6.6.A, the task graph for the AES cipher consists

of four basic tasks called sub, shf, mix and ark. Task sub is a nonlinear byte substitution

which replaces each byte with another byte according to a precomputed substitution box.

In shf, every row r in the 4 × 4 array is cyclically shifted by r bytes to the left. Task mix

views each column as a polynomial x, and calculates modulo x4 +1. Task ark adds a round

key to all bytes in the array using XOR operation. The round keys are precomputed and

are different for each of the 10 rounds.

Therefore, tasks sub and ark can be parallelized over all elements of the array, and

task shf only over the four rows, and task mix only over the four columns. We decided

to construct the FORMLESS task graph with four parameters. φ1, φ2 and φ4 control the

number of rows that the array is divided into for the sub, shf and ark tasks. Parameter φ3

controls the number of columns that the array is divided into for the mix task. For example,

the task graph of Figure 6.6.B is formed by Φ = (4, 2, 1, 1).

Fast Fourier Transform: Fourier tansform of an input array is an array of the same

size. Fast Fourier Transform (FFT), an efficient algorithm for this computation, is per-

formed using a number of basic butterfly tasks connected in a dataflow network. The basic

butterfly operation calculates Fourier of two inputs and is called a radix-2 butterfly. In

6.4. EMPIRICAL EVALUATION 98

(C)(A)
radix-4

radix-2

(B)

(D)

Figure 6.7. A) Radix-2 and radix-4 butterfly tasks. B) 16-point FFT ap-
plication with radix-4 butterfly tasks. C) The same FFT computed with
radix-2. D) Radix-2 task graph condensed with a factor of 4.

general, however, FFT can be calculated using butterfly operations with radices other than

2, although typically powers of 2 are used.

An N -point radix-r FFT computes the Fourier transform of an array of size N using

a dataflow network of radix-r butterfly tasks. This network is organized in logN
r stages

each containing N
r butterfly operations. Figure 6.7.B shows the structure of the dataflow

network for a 16-point FFT application using radix-4 butterfly tasks. Figure 6.7.C shows

the same computation performed using radix-2 butterflies. Since the computation of FFT

is independent of the choice of radix, we define our FORMLESS model for FFT based on

a forming parameter φ1 which is the radix. The radix determines the structure of the task

graph as well as inter-task data communication rates. We also define a second forming

parameter φ2 in order to condense the task graph as the following. If φ2 = 1, the task

graph is not condensed. Otherwise, in each column of the FFT task graph, φ2 butterfly

tasks are grouped together into one larger task. The condensed version of the task graph

in Figure 6.7.C, is shown in Figure 6.7.D, where φ2 = 4.

Parallel Merge Sort: Merge sort application divides the input array into a number

of segments, sorts each segments, and iteratively merges the sorted segments into larger

arrays to produce the final output. Specifically, scatter tasks divide the input among a

number of sort tasks, and the sorted results are merged back by a series of merge tasks

(Figure 6.8).

Conceptually, the input array can be split into any number of segments. Another degree

of freedom in specifying the algorithm is the number of sorted segments that are combined

6.4. EMPIRICAL EVALUATION 99

N / 3

(A) (B) (C)

N / 8

N

s o r t

m e r g e

s c a tte r

Figure 6.8. Parallel merge sort application constructed with A) Φ = (3, 3),
B) Φ = (1, 1) and C) Φ = (8, 2).

together by a merge task. The algorithm for merging more than two input streams is a

straight forward extension of merging two inputs. Clearly, in specifying the computations

of the merge task, one has to consider the parametric number of input streams to the task.

Therefore, one can use the forming vector Φ = (φ1, φ2) to cast the task graph in FORMLESS

model, where φ1 refers to the number of sort tasks, and φ2 controls the fanout and fanin

degree of the scatter and merge actors. If φ2 = 1, there is no scatter or merge actor and

the task graph has only one sort actor. Hence, the value of φ1 is an integer power of φ2 to

generate a valid task graph, i.e., φ1 = φn
2 , n > 0.

For example, the task graph of Figure 6.8.A is instantiated using the forming vector

Φ = (3, 3), because there are three sorted arrays that are combined using one merge task.

The forming vector Φ = (1, 1) would result in the task graph of Figure 6.8.B, since there is

only one sort task. Figure 6.8.D is formed by forming vector Φ = (8, 2).

Matrix Multiply: To multiply two matrices A and B, rows of A should be multiplied

by columns of B. Figure 6.9.A shows an example in which, element (7, 5) of the result

matrix C is calculated from row 7 of matrix A and column 5 of matrix B. Calculation of

elements of matrix C are independent of each other, and in principle, they can be carried

out concurrently. This approach, however, would require massive replication of data in

matrices A and B.

The basic operation of calculating an element of matrix C from rows and columns of

A and B, can be generalized to calculating block of C from multiple rows and columns of

A and B. Figure 6.9.B shows an example in which, calculating the shaded block of matrix

C, C21, requires the data from shaded rows of A (A2) and shaded columns of B (B1).

Adjusting the block size in C trades off the degree of concurrency among operations with

the required amount of data replication and movement.

6.4. EMPIRICAL EVALUATION 100

A2

Am x n x B n x p = C m x p

C p

m

A n

m

B p

n

A B

ro w 7

colum
n 5 C7 ,5

B1

(A)

A3

C

A1
A2 x B 1 = C 2 1(B)

B2 C1 1 C1 2

C3 1 C3 2

C21 C22 B

B1 B2

s c a tte r

c o p y

A m a tr ix

m u ltip ly

A2

A1

A3

(C)

g a th e r

C

Figure 6.9. A) Matrix multiply. B) Parallelized matrix multiply for Φ =
(3, 2). C) Task graph with Φ = (3, 2).

Note that unlike matrix addition, multiplication of matrices is not purely data parallel,

because the pieces of data, i.e., sub-matrices, are required in more than one sub-matrix

multiplication. In a pure data parallel application, such as matrix add, the input data can

be simply scattered to many tasks and gathered back without any extra processing before

and after the parallel operation.

Figure 6.9.C illustrates rigid task graph of the example in Figure 6.9.B. The scatter

tasks divide matrix A into horizontal sub-matrices, and matrix B into two vertical sub-

matrices. Copy tasks copy these sub-matrices to corresponding multiply tasks where the

multiplication is performed on the sub-matrices.

Thus, there are two degrees of freedom in modeling the application as a FORMLESS

task graph. Specifically, the number of row and column blocks that matrices A and B are

divided into can be adjusted independently. The forming set can be defined to include the

parameters Φ = (φ1, φ2), where φ1 (φ2) determines the number of row (column) blocks of

matrix A (B). The task graph of Figure 6.9.C is formed by Φ = (3, 2). The two parameters

would imply the size of blocks in matrix C that are modeled as concurrent tasks in the

application graph.

Domain ∆: The domains of the forming vectors used in experimenting the above

applications are shown in Figure 6.10. For example in the AES application, each of the four

forming parameters can be 1, 2 or 4.

6.4. EMPIRICAL EVALUATION 101

Benchmark Vector Φ ∆ = Domain of vector Φ |∆|
AES (φ1, . . . , φ4) δ1 = δ2 = δ3 = δ4 = {1, 2, 4} 81

FFT (φ1, φ2) δ1 = {2, 4, 8, 16}, δ2 = {1, 2, 4, . . . , 128} 32

SORT (φ1, φ2) δ1 = {1, . . . , 100}, δ2 = {1, . . . , 10}, φ1 = φn
2 26

MMUL (φ1, φ2) δ1 = δ2 = {1, . . . , 16} 256

LDPC (φ1) δ1 = {1, 2, 4, 8, 16} 5

Figure 6.10. Domain of the forming parameters in our benchmark appli-
cations. In the SORT benchmark, there are only a total of 26 cases since
not all combinations of φ1 ∈ δ1 and φ2 ∈ δ2 are in the domain.

6.4.2. Experiment Setup. We implemented both FORMLESS design space explo-

ration and baseline software synthesis schemes (Figure 6.4). For a given number of pro-

cessors, P , within the range of 1 to 100, an optimized task graph G(Φopt) is constructed,

and subsequently, parallel software modules (separate .C files) are synthesized for this task

graph. In synthesizing the parallel software modules, the task assignment step is as de-

scribed in Section 6.3, the task scheduling is a simple topological traversal of the task graph

following the iteration overlapping method in Chapter 5, and the processor assignment step

is manual.

We consider the following FPGA-prototyped multiprocessor system for throughput mea-

surement of the synthesized software modules. Each processor is an Altera NiosII/f core

with 8KB instruction cache and 32KB data cache. The communication network is a mesh

which connects the neighbor processors with FIFO channels of depth 1024. The processors

use a shared DDR2-800 memory, but they only access their own region in this memory, i.e.,

they communicate only through the FIFO channels. The compiler is nios-gcc in Altera

NiosII IDE with optimization flag -O2. Due to limited FPGA capacity, we were able to

implement the above architecture with up to 8 cores. For more number of processors, we

estimated the throughput using SEAM, i.e., the abstract model discussed in chapter 4. In

constructing the abstract model we used the estimated workload (Section 6.3).

6.4.3. Experiment Results. The experiment results confirm that throughput of the

best instantiated task graph consistently beats the throughput of any rigid task graph.

Figure 6.11 presents the application throughput numbers normalized relative to single-

core throughput. The black curves show the throughput values obtained through SEAM

simulations from synthesized parallel implementations, and the 8 black squares show the

6.4. EMPIRICAL EVALUATION 102

AES

opt

FPGA
rig id g ra ph

= 2,2,1,2

0

10

20

30

40

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

FFT

opt

F
PG

A

rig id g ra ph

= (2,16)

0

5

10

15

20

25

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

SORT
opt

F
P

G
A

rig id g ra ph

= (3,3)

0

1

2

3

4

5

6

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

MMUL

opt

rig id g ra ph

= (5,5)FPGA

0

10

20

30

40

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LDPC

rig id g ra ph

= (4)

opt

FP
G

A

0

5

10

15

20

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

R ig id g ra ph (fix e d)
D S E ins ta ntia te d g ra ph (opt)
FPGA

LDPC (fifo 8x larger)

opt

rig id g ra ph

= (4)

0

10

20

30

0 20 40 60 8 0 100

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

nu m b e r of c ore s

Figure 6.11. Application throughput on manycore platforms normalized
with respect to single-core throughput. The black curve shows the through-
put obtained from the DSE instantiated task graphs, i.e., G(Φopt). The gray
curves show the throughput of sample rigid task graphs. Deadlock is denoted
with a zero throughput value in the figure.

throughput measured on the FPGA prototype for systems up to 8 processors. The gray

curves show throughput of few rigid task graphs selected for our discussion. There are two

LDPC charts in the figure and the reason is described later in Section 6.4.6.

The experiments confirm that rigid task graphs have a limited scope of efficient porta-

bility and scalability with respect to number of processors. For example, an LDPC rigid

task graph constructed with forming vector Φ = (4) does not scale beyond 40 processors

(bottom right corner in Figure 6.11). Note that a rigid task graph which scales to large

number of processors does not necessarily yields the best throughput in smaller number of

6.4. EMPIRICAL EVALUATION 103

processors. For example, an AES rigid task graph constructed with Φ = (2, 2, 1, 2) only

yields the highest throughput for 90 or more processors (top left corner in Figure 6.11). It

is hard to see in the figure, but for a single processor the rigid AES task graph yields 74%

throughput of the best instantiated task graph.

Similar scenarios happen in all benchmark case studies. Each forming vector Φ yields

the highest throughput only for a range of targets. This result validates the effectiveness of

FORMLESS in extending the scope of efficient portability and scalability with respect to

number of cores.

It is interesting to see that, for example, in the matrix multiply application Φ = (5, 5)

is not selected for the 25-core target. Instead, the DSE tool selected Φ = (6, 4) which has

24 multiply tasks. This forming set is not intuitive because one would normally split the

multiplication workload into an array of 5×5 = 25 multiply tasks for 25 cores. The DSE tool

considers the effect of smaller tasks (e.g., scatter tasks), and the communication-induced

workloads as well. This again proves that an automated tool outperforms manual task

graph formation. However, the DSE is able to scale performance only if the programmer

has provided meaningful parallelism. For example in the SORT application, a larger value

for the forming parameter φ1 results in more parallel sort tasks, but the performance does

not scale beyond 13 processors because the workload of the last merge stage is very large

and it is not parallelized.

Figure 6.11 can also be used to determine a reasonable target size, i.e., the number

of processors, for each application. For example in the AES application, more than 40

processors does not yield a throughput gain unless we have at least 50 processors.

Comparisons between the estimated throughput given by SEAM (black curves in Figure

6.11) with the throughput measured on FPGA (black squares in Figure 6.11) confirms that

SEAM is relatively accurate. As we see the two values are very close to each other.

6.4.4. Improving the DSE. As mentioned before, for a given number of processors,

P , within the range of 1 to 100, the DSE selects an optimum forming vector Φopt and

constructs the corresponding task graph G(Φopt) for software synthesis. Since the main

objective in this chapter is to demonstrate the scalability of malleable specifications, and

not development of a sophisticated DSE, the current DSE algorithm implements only an

6.4. EMPIRICAL EVALUATION 104

exhaustive search of all the possible forming vectors. However, we plan to improve DSE

to judiciously search only among a small subset of possible forming vectors. In fact, some

vectors are never selected by the DSE for any target size, and thus, only a portion of the

vectors are enough to cover all the target sizes. In other words, the set of DSE selected

forming vectors Φopt across all target sizes (1 ≤ P ≤ 100) is a small subset of ∆, the domain

of Φ. For example in the AES application, size of ∆ is 81 but size of this set is 13, i.e.,

81 − 13 = 68 forming vectors are never selected by the DSE for any target size.

In order to have detailed statistics on this matter, we analyzed the DSE results as

the following. Forming vectors are sorted based on their frequency of selection by the

AES

89

m s q

1 1 %

4 1 %

m a x

2 0

4 0

6 0

80

1 00

0 5 1 0 1 5
o f p a ra m e te rs , to ta l = 81

C
ov

er
ag

e

0

1 0

2 0

3 0

4 0

5 0

%
 T

hr
u.

 D
eg

ra
da

tio
n

FFT

88

m s q

m a x

6 .1 %

3 6 %

2 0

4 0

6 0

80

1 00

0 2 4 6 8
o f p a ra m e te rs , to ta l = 3 2

C
ov

er
ag

e

0

1 0

2 0

3 0

4 0

%
 T

hr
u.

 D
eg

ra
da

tio
n

SORT

96

m s q

m a x 1 2 %

2 3 %

85

87

89

91

93

95

97

99

0 2 4 6 8 1 0
o f p a ra m e te rs , to ta l = 2 6

C
ov

er
ag

e

0

1 0

2 0

3 0

%
 T

hr
u.

 D
eg

ra
da

tio
n

MMUL

93

m s q
9.8%

3 3 %

m a x

0

2 5

5 0

7 5

1 00

0 5 1 0 1 5 2 0 2 5 3 0 3 5
o f p a ra m e te rs , to ta l = 2 5 6

C
ov

er
ag

e

0

1 0

2 0

3 0

4 0

%
 T

hr
u.

 D
eg

ra
da

tio
n

LDPC

98

m s q 6 .0%
m a x

6 0

7 0

80

90

1 00

0 1 2 3 4 5
o f p a ra m e te rs , to ta l = 5

C
ov

er
ag

e

0

2 5

5 0

7 5

1 00

%
 T

hr
u.

 D
eg

ra
da

tio
n

C o v e ra g e

A v e ra g e th ro u g h p u t d e g ra d a tio n

M a x im u m th ro u g h p u t d e g ra d a tio n

Figure 6.12. Coverage and throughput degradation vs the number of form-
ing vectors (Section 6.4.4).

6.4. EMPIRICAL EVALUATION 105

DSE across all target sizes. The black curves in Figure 6.12 show the cumulative selection

frequency (coverage) of the sorted vectors. For example in the AES application (top left),

the first vector (in the sorted order) is selected by the DSE in 40 out of 100 different target

sizes. The second vector is selected in 21 target sizes, and hence, the two vectors cover

40 + 21 = 61 target sizes. The coverage increases to 100 with more number of forming

vectors. In the AES application, for example, 5 vectors are enough to cover 89 target sizes,

and 13 vectors are enough to cover all target sizes.

The gray curves in Figure 6.12 show the throughput degradation as a result of consid-

ering only a subset of the forming vectors (in the above sorted order). For example in the

AES application (top left), the first 5 forming vectors cover 89 target sizes, and in the other

100 − 89 = 11 uncovered target sizes, this set of forming vectors result in a throughput

degradation of 11% in the worst case and 6.2% on average (mean square).

The amount of throughput degradation decreases with more forming vectors. In order

to instantiate task graphs with around 10% maximum throughput degradation, only a small

number of the forming vectors are required, 15% of the vectors on average (geometric mean).

See the hallow points in Figure 6.12.

6.4.5. Accuracy of SEAM. Recall from Chapter 4 that SEAM accurately models

the behavior of the onchip network through RTL Verilog simulation of the network with

Modelsim. However, SEAM does not model the effect of cache. Specifically, SEAM uses the

workload estimates (Section 6.3) as the execution latency of tasks, and hence, small cache

sizes may increase this latency and cause inaccuracy. Figure 6.13 shows the throughput

measured on FPGA for different data cache sizes, along with the SEAM estimation. We

observe that when data cache size is 32KB, SEAM is very accurate in all benchmarks,

except LDPC which has large data sets. In LDPC application, SEAM estimations follow

the same trend in throughput scaling as the FPGA measurements.

Data memory requirements of the produced codes are gathered following compilation

with nios-gcc with -O2 optimization flag. Minimum, average and maximum size of the

data memory section of the codes are also reported in Figure 6.13. The values are measured

from the compiled .elf binary using nios-elf-size program.

6.4. EMPIRICAL EVALUATION 106

AES

0

2

4

6

8

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

AES

0

0.2

0.4

0.6

0.8

1

1.2

M
em

or
y

(K
B

)

FFT

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

FFT

0

5

10

15

M
em

or
y

(K
B

)

SORT

0

1

2

3

4

5

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

SORT

0

2

4

6

8

10

12

M
em

or
y

(K
B

)

MMUL

0

1

2

3

4

5

6

7

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

MMUL

0

2

4

6

8

10

12

M
em

or
y

(K
B

)

LDPC

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8number of cores

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

LDPC

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

M
em

or
y

(K
B

)

SEAM FPGA (32KB Cache)

FPGA (8KB Cache) FPGA (2KB Cache)
max avg min

Figure 6.13. Application throughput normalized with respect to single-
core throughput for different data cache sizes.

6.4. EMPIRICAL EVALUATION 107

6.4.6. Effect of FIFO Depth. For a cut channel e(v, u) ∈ C from task v with pro-

duction rate of p to a task u with consumption rate of c, previous studies [ALP97, SGB08]

mention that the minimum buffer size required to avoid deadlock is

(6.11) p + c − gcd(p, c)

The right column in Figure 6.14 shows the value calculated from this equation for all the

benchmarks. Based on this equation, a FIFO size of 1024 is not enough to avoid deadlock

in the LDPC benchmark. As shown previously in Figure 6.11 on page 102 (the bottom left

chart), the LDPC benchmark has deadlock in 82 cases out of 100 when FIFO size is 1024.

Deadlock is denoted with a zero throughput value in the figures. The bottom right chart in

Figure 6.11 on page 102 shows the throughput when FIFO size is 8192. Deadlock happens

in only 2 cases for this larger FIFO size. Further investigation revealed the reason. The

task assignment algorithm creates a cyclic dependency between two processors which makes

the FIFO size requirement go higher than the value in Equation 6.11.

Interestingly, we observed that in many cases FIFO sizes smaller than p + c − gcd(p, c)

are enough not to reduce the throughput or cause deadlock, and in few other cases even

larger FIFO sizes cause deadlock. We further investigated this matter to find the reason.

The left column shows the throughput estimated by SEAM for two different FIFO sizes,

one large FIFO whose size if close to the value from Equation 6.11 (dark curve in the

figure), and one small FIFO (light gray points in the figure). Recall from Chapter 4 that

SEAM only abstracts the local execution phases of every processor, while the behavior of

the onchip network is accurately modeled through RTL Verilog simulation of the network

with Modelsim.

As we see in the figure, for example, in the AES application (top right), a minimum

FIFO size of 8, 16 or 32 is required to avoid deadlock based on Equation 6.11. However,

we observed that a FIFO size of 2 avoids deadlock in 89 out of 100 cases, and this small

FIFO size does not even reduce the throughput in 80 cases (top left figure). FFT requires

a FIFO size of 128 or 256 in most cases, but we observed that 32 is enough in 92 cases.

Similar scenario happens in other benchmarks as well.

This is because formulations such as Equation 6.11 [ALP97, SGB08] only consider

the dataflow specification in its pure mathematical form and ignore the implementation

6.4. EMPIRICAL EVALUATION 108

AES

F=2

F=1 6

0

20

4 0

6 0

8 0

1 00

1 20

0 20 4 0 6 0 8 0 1 00

(%
)

T
hr

u
(f

ifo
=F

)
/

T
hr

u
(f

ifo
=

) AES

0

1 0

20

3 0

4 0

5 0

0 20 4 0 6 0 8 0 1 00

E
qu

at
io

n
6.

1

FFT

F=3 2

F=25 6

0

20

4 0

6 0

8 0

1 00

1 20

0 20 4 0 6 0 8 0 1 00

(%
)

T
hr

u
(f

ifo
=F

)
/

T
hr

u
(f

ifo
=

) FFT

0

1 00

200

3 00

4 00

5 00

6 00

0 20 4 0 6 0 8 0 1 00

E
qu

at
io

n
6.

1
SORT

F=3 2

F=5 1 2

0

20

4 0

6 0

8 0

1 00

1 20

0 20 4 0 6 0 8 0 1 00

(%
)

T
hr

u
(f

ifo
=F

)
/

T
hr

u
(f

ifo
=

) SORT

0

200

4 00

6 00

8 00

1 000

0 20 4 0 6 0 8 0 1 00

E
qu

at
io

n
6.

1

MMUL

F=6 4

F=25 6

0

20

4 0

6 0

8 0

1 00

1 20

0 20 4 0 6 0 8 0 1 00

(%
)

T
hr

u
(f

ifo
=F

)
/

T
hr

u
(f

ifo
=

) MMUL

0

1 00

200

3 00

4 00

5 00

6 00

0 20 4 0 6 0 8 0 1 00

E
qu

at
io

n
6.

1

LDPC

F=1 28

F=8 1 9 2

0

20

4 0

6 0

8 0

1 00

1 20

0 20 4 0 6 0 8 0 1 00

(%
)

T
hr

u
(f

ifo
=F

)
/

T
hr

u
(f

ifo
=

) LDPC

0

1 0000

20000

3 0000

4 0000

5 0000

6 0000

7 0000

8 0000

0 20 4 0 6 0 8 0 1 00

E
qu

at
io

n
6.

1

n u m b e r o f c o re s n u m b e r o f c o re s

Figure 6.14. Left: ratio of the throughput for a specific FIFO size F, over
the throughput with infinite FIFO. Right: minimum buffer sizes required to
avoid deadlock, calculated from Equation 6.11.

6.5. RELATED WORK AND CHAPTER SUMMARY 109

details. The mathematical model is that a task consumes all the required tokens at once

upon firing, and also produces all the output tokens at once. However, in reality the data

should be transfered from the local memory of the processors to the FIFO channel, and this

is normally implemented with a software loop or a hardware DMA unit which transfers the

data tokens one by one, and not at once.

6.5. Related Work and Chapter Summary

Parametrized dataflow [BB01] and dataflow interchange format [P+08] models primar-

ily focus on specifications which enable different static and/or dynamic dataflow behaviors

based on the parameters. We, however, focused on specifying different possible implemen-

tations of the same application behavior, in order to achieve scaling of performance with

respect to the number of processors. Therefore, we were able to employ a richer set of

programming constructs to specify many aspects of the task graph based on the forming

parameters (Section 6.2.2). For example, as opposed to previous works [BB01, P+08], not

only the production/consumption port rates but also the number of ports for each task can

be specified based on the forming parameters in FORMLESS.

StreamIt compiler [Gor10] automatically detects stateless filters (data-parallel tasks)

and judiciously parallelizes them in order to achieve better workload balance and hence

scaling of performance. This approach provides some level of malleability, but it is limited

to data-parallel tasks because it fully relies on the compiler’s ability to detect malleable

sections in the application.

In CUDA, scaling of performance is achieved by specifying the application with as

much parallelism as practically possible. At runtime, an online scheduler has access to

a pool of threads from which the non-blocked threads are selected and executed on the

available processors [N+08]. This enables scaling of performance to newer devices with

larger number of processors. However, performance optimization for a specific target GPU

device fully relies on the programmer to optimally specify the application, e.g., the number

of blocks per grid and the number of threads per block [Cud11].

This chapter proposed a FORMLESS model in which the programmer explicitly provides

a malleable specification, and the complier optimizations select the best task graph based

on the malleable specification.

110

CHAPTER 7

Conclusion and Future Work

Abundant parallelism and predictable data accesses in streaming applications provide

the opportunity to efficiently map high-level streaming specifications to target manycore

platforms. Chapters 2 to 5 presented our contributions on efficient optimization and esti-

mation techniques required for automated synthesis of streaming software. Different opti-

mization steps involved in automated software synthesis of stream applications affect one

another, a summary of which is the following.

• Task assignment judiciously partitions the task graph to achieve a balanced work-

load while avoiding excessive communication overhead. Restricting the task as-

signment to convex partitions prohibit many solutions which may potentially have

a better workload balance. However, this restriction simplifies the task schedul-

ing process by avoiding cyclic dependencies between the processors. On the other

hand, allowing non-convex partitions may improve the workload balance but re-

quires iteration overlapping techniques in scheduling of the tasks in order to achieve

the expected throughput. Otherwise the cyclic dependencies which did not exist

in the task graph and were created as a result of non-convex partitions may signif-

icantly reduce the throughput. To this point, one may decide to favor non-convex

partitions. Nevertheless, iteration overlapping requires more buffer memory, which

may reduce the throughput since hardware or software managed cache units may

need to spill data in and out of the slow main memory more often. The greater

impact, however, is on onchip communications. Buffer memory required between

two tasks assigned to separate processors is also increased as a result of iteration

overlapping. This may reduce the throughput or even worse cause deadlock if

enough buffering is not available in the architecture. Further investigation into the

interrelated effects of task assignment, iteration overlapping and inter-processor

111

buffering capacity is required to enable safe usage of non-convex partitions and

iteration overlapping.

• Processor assignment judiciously assigns the logical processors (partitions from

task assignment) to physical processors, in order to conform to the limitations of

onchip communication resources and/or avoid heavy long distance communications

and network congestion. Separation of task assignment and processor assignment

steps simplifies the problem by dividing it into two subproblems. However, task

assignment should be aware of architecture limitations and produce partitions that

are digestable by the processor assignment. For example, in mesh architectures

with limited connections to neighbor processors, task assignment should at least

limit the in-degree and out-degree of the produced partitons.

• Embedded manycore systems often have limited local memory which may need to

be considered as a constraint during the optimization steps such as task assignment

or task scheduling. Our experience shows that most of the optimizations following

the task assignment step have only a minimal impact on the instruction memory

requirement of the parallel software modules. However, data memory requirement

often varies by a great degree in every step. Violating the architecture limitation

on instruction memory often renders the solution infeasible, while violating the

limitation on data memory can often be mitigated by spilling data to main memory

at a performance cost. Hence, it is often enough to consider the constraint on

instruction memory requirements only during the task assignment step. However,

an estimate of the impact on data memory requirement on future optimization

steps should ideally be considered in earlier steps, or alternatively, later steps may

adjust the solution, at possible performance costs, to meet the constraints on or

to optimize the data memory requirement.

• In addition to the workload of processors, inter-processor data communications as

well as processor-memory data communications contribute to the power consump-

tion of manycore platforms. Therefore, any power constraint may be considered as

part of task assignment and processor assignment steps, which have direct impact

on workloads and communications. In other words, power consumption can be

112

estimated based on the workloads and communications. However, in order to have

a more precise control, power modeling of tasks based on their high-level source

code, and data communications based on their rates or volume are required.

Gaining insight from our previous works, we concluded that achieving portability and scal-

ability across a wide range of manycore platforms requires not only efficient optimization

techniques, but also right abstractions for both the high-level application specification model

and the manycore platform model. Chapter 6 presented a preliminary evaluation of the op-

portunity that a higher-order malleable dataflow model such as FORMLESS can provide

to software synthesis.

It is a costly and time-consuming practice for the programmer to go through the cycle

of specifying the application, perform automated software synthesis, find bottlenecks and

other limitations, and re-specify the application. On the other hand, it is very difficult

for the compiler to infer malleable portions of the application specification and adjust that

automatically without any help from the programmer. The idea behind FORMLESS is that

the programmer should help the compiler to automatically find the best task graph speci-

fication by provding a malleable higher-order specification. Future directions in advancing

the FORMLESS model are the following.

• Map-reduce applications, such as sort networks, normally have a tree-like graph

structure which can potentially be formed in infinite possible ways, i.e., infinite

possible tree structures. Each node in the tree may have a different type and

number of sub-trees based on its forming parameters. The programmer may specify

such malleable map-reduce network in a recursive manner. The degree of recursion

on each node would be analogous to the depth of its sub-tree. Therefore, both the

malleable specification model and the design space exploration should support

forming parameters that may exist only as a result of specific values of other

forming parameters. In other words, FORMLESS should support forming vectors

of variable size.

• Currently exploration of the forming parameter space is exhaustive. There are two

alternatives for development of a sophisticated exploration in the future. The first

option would be to start from an initial forming vector and iteratively improve

113

the solution by guiding the algorithm to target throughput bottlenecks in restruc-

turing the task graph. The second option would be to employ the mathematical

formulation of the workload estimates based on the forming parameters, and prune

portions of the parameter space which are guaranteed to yield inferior solutions.

• Another direction for future work is development of FORMLESS-aware optimiza-

tion steps especially task assignment and processor assignment. A quick explo-

ration pass may provide a reasonable task graph to software synthesis steps. How-

ever, it is also possible to keep the malleability throughout the software synthesis

and change the graph structure based on the bottlenecks or limitations faced in

each step.

• Scatter and gather of data among the tasks should be separated from the task

graph structure, even in the formed (rigid) graph instantiated by the parameter

space exploration. Such data dependences are simple enough to be automatically

implemented by software synthesis steps based on a given situation. For example,

scattering of data among a large number of consumer tasks may be implemented

with a single scatter task, a tree network of scatter tasks, or a chain of scatter tasks.

Specific implementation of such operations should be left to software synthesis.

114

Bibliography

[ABC+06] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson,

W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, The landscape of parallel comput-

ing research: A view from berkeley, Tech. Report UCB/EECS-2006-183, EECS Department,

University of California, Berkeley, 2006.

[AED07] J. H. Ahn, M. Erez, and W. J. Dally, Tradeoff between data-, instruction-, and thread-level par-

allelism in stream processors, Proceedings of the International Conference on Supercomputing

(2007), 126–137.

[AL07] A. Agarwal and M. Levy, The kill rule for multicore, Proceedings of the 44th annual Design

Automation Conference, DAC ’07, 2007, pp. 750–753.

[ALP97] M. Ade, R. Lauwereins, and J. Peperstraete, Data memory minimisation for synchronous data

flow graphs emulated on dsp-fpga targets, Design Automation Conference, 1997. Proceedings

of the 34th, jun 1997, pp. 64 –69.

[BB01] B. Bhattacharya and S. Bhattacharyya, Parameterized dataflow modeling for DSP systems,

IEEE Transactions on Signal Processing 49 (2001), no. 10, 2408–2421.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, L. Bao,

J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fair-

banks, D. Khan, F. Montenegro, J. Stickney, and J. Zook, Tile64 - processor: A 64-core soc

with mesh interconnect, Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical

Papers. IEEE International, feb. 2008, pp. 88 –598.

[BGS94] D. F. Bacon, S. L. Graham, and O. J. Sharp, Compiler transformations for high-performance

computing, ACM Comput. Surv. 26 (1994), 345–420.

[BHH+07] R. I. Bahar, D. Hammerstrom, J. Harlow, W. H. J. Jr., C. Lau, D. Marculescu, A. Orailoglu,

and M. Pedram, Architectures for silicon nanoelectronics and beyond, Computer 40 (2007),

no. 1, 25 –33.

[BLM96] S. S. Battacharyya, E. A. Lee, and P. K. Murthy, Software synthesis from dataflow graphs,

Kluwer Academic Publishers, 1996.

[BML99] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Synthesis of embedded software from

synchronous dataflow specifications, J. VLSI Signal Process. Syst. 21 (1999), 151–166.

[Bor07] S. Borkar, Thousand core chips: a technology perspective, Proceedings of the 44th annual

Design Automation Conference, DAC ’07, 2007, pp. 746–749.

115

[BWH+03] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-Vincentelli,

Metropolis: an integrated electronic system design environment, Computer 36 (2003), no. 4,

45 – 52.

[BYLN09] E. D. Berger, T. Yang, T. Liu, and G. Novark, Grace: safe multithreaded programming for

C/C++, SIGPLAN Not. 44 (2009), 81–96.

[Cat06] J. A. Cataldo, The power of higher-order composition languages in system design, Ph.D. thesis,

University of California, Berkeley, 2006.

[CGHP04] J.-L. Colaço, A. Girault, G. Hamon, and M. Pouzet, Towards a higher-order synchronous

data-flow language, International Conference on Embedded Software (2004), 230–239.

[CHJ07] J. Cong, G. Han, and W. Jiang, Synthesis of an application-specific soft multiprocessor system,

Proceedings of the International Symposium on Field Programmable Gate Arrays (2007).

[CLRS01a] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, ch. 24.2,

2001.

[CLRS01b] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms, ch. 27.5,

2001.

[Cud11] Cuda, CUDA C best practices guide, ch. 4.4, March 2011.

[dK02] E. A. de Kock, Multiprocessor mapping of process networks: a JPEG decoding case study,

Proceedings of the International Symposium on System Synthesis (2002), 68–73.

[Eat05] W. Eatherton, The push of network processing to the top of the pyramid, Keynote Presentation

at Symposium on Architectures for Networking and Communications Systems (2005).

[EEP06] C. Erbas, S. C. Erbas, and A. D. Pimentel, Multiobjective optimization and evolutionary

algorithms for the application mapping problem in multiprocessor system-on-chip design, IEEE

Transactions on Evolutionary Computation 10 (2006), no. 3, 358–374.

[FHHG10] M. H. Foroozannejad, M. Hashemi, T. L. Hodges, and S. Ghiasi, Look into details: the ben-

efits of fine-grain streaming buffer analysis, Proceedings of the ACM SIGPLAN/SIGBED

2010 conference on Languages, compilers, and tools for embedded systems, LCTES ’10, 2010,

pp. 27–36.

[FHHG11] M. H. Foroozannejad, T. L. Hodges, M. Hashemi, and S. Ghiasi, Post-scheduling buffer man-

agement tradeoffs insynthesis of streaming applications, ACM Trans. Embed. Comput. Syst.

(2011).

[FRRJ07] Y. Fei, S. Ravi, A. Raghunathan, and N. K. Jha, Energy-optimizing source code transforma-

tions for operating system-driven embedded software, ACM Trans. Embed. Comput. Syst. 7

(2007), 2:1–2:26.

[G+02] M. I. Gordon et al., A stream compiler for communication-exposed architectures, Proceedings

of the International Conference on Architectural Support for Programming Languages and

Operating Systems (2002).

116

[GB04] M. Geilen and T. Basten, Reactive process networks, Proceedings of the 4th ACM international

conference on Embedded software, EMSOFT ’04, 2004, pp. 137–146.

[GGB+06] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi, and S. Stuijk,

Liveness and boundedness of synchronous data flow graphs, Proceedings of the Formal Methods

in Computer Aided Design (2006), 68–75.

[GGS+06] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R. Mousavi, A. J. M.

Moonen, and M. Bekooij, Throughput analysis of synchronous data flow graphs, International

Conference on Application of Concurrency to System Design, 2006, pp. 25–36.

[GJ90] M. R. Garey and D. S. Johnson, Computers and intractability; a guide to the theory of np-

completeness, W. H. Freeman, 1990.

[GLGN+08] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips,

Y. Zhang, and V. Volkov, Parallel computing experiences with cuda, Micro, IEEE 28 (2008),

no. 4, 13 –27.

[Gor10] M. Gordon, Compiler techniques for scalable performance of stream programs on multicore

architectures, Ph.D. thesis, Massachusetts Institute of Technology, 2010.

[GTA06] M. I. Gordon, W. Thies, and S. Amarasinghe, Exploiting coarse-grained task, data, and pipeline

parallelism in stream programs, Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems (2006).

[HCK+09] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke, Flextream: Adaptive

compilation of streaming applications for heterogeneous architectures, Proceedings of the 2009

18th International Conference on Parallel Architectures and Compilation Techniques, 2009,

pp. 214–223.

[HCW+10] A. H. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke, Macross:

macro-simdization of streaming applications, Proceedings of the fifteenth edition of ASPLOS

on Architectural support for programming languages and operating systems, ASPLOS ’10,

2010, pp. 285–296.

[HFC+11] M. Hashemi, M. H. Foroozannejad, L. Chen, C. Etzel, and S. Ghiasi, The power of formless

dataflow specifications in scalable programming of embedded manycore platforms, Submitted

to ACM Transactions on Design Automation of Electronic Systems (2011).

[HG08] M. Hashemi and S. Ghiasi, Exact and approximate task assignment algorithms for pipelined

software synthesis, Proceedings of the conference on Design, automation and test in Europe,

DATE ’08, 2008, pp. 746–751.

[HG09] M. Hashemi and S. Ghiasi, Throughput-driven synthesis of embedded software for pipelined

execution on multicore architectures, ACM Trans. Embed. Comput. Syst. 8 (2009), 11:1–11:35.

117

[HG10] M. Hashemi and S. Ghiasi, Versatile task assignment for heterogeneous soft dual-processor

platforms, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on

29 (2010), no. 3, 414 –425.

[HG11a] M. Hashemi and S. Ghiasi, Iteration overlapping: Exploiting throughput-memory tradeoffs in

streaming applications, Submitted to ACM Trans. Embed. Comput. Syst. (2011).

[HG11b] M. Hashemi and S. Ghiasi, Formless: Scalable and productive utilization of embedded many-

cores in streaming applications, Cool Work-In-Progress Poster Session, Proceedings of the

Design Automation Conference, 2011.

[HHG07] P.-K. Huang, M. Hashemi, and S. Ghiasi, Joint throughput and energy optimization for

pipelined execution of embedded streaming applications, Proceedings of the 2007 ACM SIG-

PLAN/SIGBED conference on Languages, compilers, and tools for embedded systems, LCTES

’07, 2007, pp. 137–139.

[HHG08] P.-K. Huang, M. Hashemi, and S. Ghiasi, System-level performance estimation for application-

specific mpsoc interconnect synthesis, Proceedings of the 2008 Symposium on Application

Specific Processors, 2008, pp. 95–100.

[HM05] J. Hu and R. Marculescu, Energy- and performance-aware mapping for regular NoC architec-

tures, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 24

(2005), no. 4.

[HS06] T. A. Henzinger and J. Sifakis, The embedded systems design challenge, International Sympo-

sium on Formal Methods (2006), 1–15.

[IHK04] C. Im, S. Ha, and H. Kim, Dynamic voltage scheduling with buffers in low-power multimedia

applications, ACM Trans. Embed. Comput. Syst. 3 (2004), 686–705.

[JPSN09] P. Joshi, C.-S. Park, K. Sen, and M. Naik, A randomized dynamic program analysis technique

for detecting real deadlocks, Proceedings of the 2009 ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’09, 2009, pp. 110–120.

[KDH+05] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy, Introduction

to the cell multiprocessor, IBM Journal of Research and Development 49 (2005), no. 4.5, 589

–604.

[KK98] G. Karypis and V. Kumar, METIS 4.0: Unstructured graph partitioning and sparse matrix

ordering system, Tech. report, Department of Computer Science. University of Minnesota,

Minneapolis, 1998.

[KM08] M. Kudlur and S. Mahlke, Orchestrating the execution of stream programs on multicore plat-

forms, Proceedings of the 2008 ACM SIGPLAN conference on Programming language design

and implementation, PLDI ’08, 2008, pp. 114–124.

118

[KMB07] M.-Y. Ko, P. K. Murthy, and S. S. Bhattacharyya, Beyond single-appearance schedules: Effi-

cient dsp software synthesis using nested procedure calls, ACM Trans. Embed. Comput. Syst.

6 (2007).

[KTA03] M. Karczmarek, W. Thies, and S. Amarasinghe, Phased scheduling of stream programs, Pro-

ceedings of the 2003 ACM SIGPLAN conference on Language, compiler, and tool for embedded

systems, LCTES ’03, 2003, pp. 103–112.

[LBDM02] Y.-H. Lu, L. Benini, and G. De Micheli, Dynamic frequency scaling with buffer insertion for

mixed workloads, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on 21 (2002), no. 11, 1284 – 1305.

[Lee05] E. A. Lee, Building unreliable systems out of reliable components: The real time story, Tech.

Report UCB/EECS-2005-5, EECS Department, University of California, Berkeley, 2005.

[Lee06] E. Lee, The problem with threads, Computer 39 (2006), no. 5, 33 – 42.

[LGX+09] W. Liu, Z. Gu, J. Xu, Y. Wang, and M. Yuan, An efficient technique for analysis of minimal

buffer requirements of synchronous dataflow graphs with model checking, Proceedings of the

7th IEEE/ACM international conference on Hardware/software codesign and system synthesis,

CODES+ISSS ’09, 2009, pp. 61–70.

[LKJ+08] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S. Han, Facsim: a fast and

cycle-accurate architecture simulator for embedded systems, Proceedings of the 2008 ACM

SIGPLAN-SIGBED conference on Languages, compilers, and tools for embedded systems,

LCTES ’08, 2008, pp. 89–100.

[LM87a] E. A. Lee and D. G. Messerschmitt, Synchronous data flow, Proceedings of the IEEE 75

(1987), no. 9, 1235–1245.

[LM87b] E. A. Lee and D. G. Messerschmitt, Static scheduling of synchronous data flow programs for

digital signal processing, Computers, IEEE Transactions on C-36 (1987), no. 1, 24 –35.

[LP95] E. A. Lee and T. M. Parks, Dataflow process networks, Proceedings of the IEEE 83 (1995),

no. 5, 773–801.

[MB04] P. K. Murthy and S. S. Bhattacharyya, Buffer merging a powerful technique for reducing mem-

ory requirements of synchronous dataflow specifications, ACM Trans. Des. Autom. Electron.

Syst. 9 (2004), 212–237.

[Mee06] Meeting, Joint United States-European Union-TEKES workshop: Long term

challenges in high confidence composable embedded systems, June 2006,

http://www.truststc.org/euus/wiki/Euus/HelsinkiMeeting.

[Mic] MicroBlaze, www.xilinx.com/microblaze.

[Mic94] G. D. Micheli, Synthesis and optimization of digital circuits, McGraw-Hill, 1994.

119

[MK08] I. Moulitsas and G. Karypis, Architecture aware partitioning algorithms, Proceedings of the

8th international conference on Algorithms and Architectures for Parallel Processing, ICA3PP

’08, 2008, pp. 42–53.

[MKWS07] S. Meijer, B. Kienhuis, J. Walters, and D. Snuijf, Automatic partitioning and mapping of

stream-based applications onto the intel IXP network processor, Proceedings of the Interna-

tional Workshop on Software and Compilers for Embedded Systems (2007), 23–30.

[Moh10] T. Mohsenin, Algorithms and architectures for efficient low density parity check (LDPC) de-

coder hardware, Ph.D. thesis, University of California, Davis, 2010.

[MTB09] T. Mohsenin, D. Truong, and B. Baas, Multi-split-row threshold decoding implementations for

LDPC codes, International Symposium on Circuits and Systems (2009).

[N+08] J. Nickolls et al., Scalable parallel programming with CUDA, ACM Queue 6 (2008), 40–53.

[NDB09] N. Nguyen, A. Dominguez, and R. Barua, Memory allocation for embedded systems with a

compile-time-unknown scratch-pad size, ACM Trans. Embed. Comput. Syst. 8 (2009), 21:1–

21:32.

[Nio] Nios, www.altera.com/nios.

[P+95] J. L. Pino et al., Software synthesis for DSP using Ptolemy, Journal of VLSI Signal Processing

Systems 9 (1995), no. 1-2, 7–21.

[P+08] W. Plishker et al., Functional DIF for rapid prototyping, Proceedings of the IEEE/IFIP Inter-

national Symposium on Rapid System Prototyping, 2008, pp. 17–23.

[PBSV+06] A. Pinto, A. Bonivento, A. L. Sangiovanni-Vincentelli, R. Passerone, and M. Sgroi, System

level design paradigms: Platform-based design and communication synthesis, 11 (2006), no. 3,

537–563.

[PD10] J. Park and W. J. Dally, Buffer-space efficient and deadlock-free scheduling of stream applica-

tions on multi-core architectures, Proceedings of the 22nd ACM symposium on Parallelism in

algorithms and architectures, SPAA ’10, 2010, pp. 1–10.

[PTD+06] G. Panesar, D. Towner, A. Duller, A. Gray, and W. Robbins, Deterministic parallel processing,

Int. J. Parallel Program. 34 (2006), 323–341.

[Pul08] D. Pulley, Multi-core dsp for base stations: large and small, Proceedings of the 2008 Asia and

South Pacific Design Automation Conference, ASP-DAC ’08, 2008, pp. 389–391.

[Rau94] R. Rau, Iterative modulo scheduling: an algorithm for software pipelining loops, International

Symposium on Microarchitecture (1994), 63–74.

[RGSL96] J. Ruttenbergand, G. Gao, A. Stoutchinin, and W. Lichtenstein, Software pipelining showdown:

optimal vs. heuristic methods in a production compiler, Conference on Programming Language

Design and Implementation (1996).

120

[RTM+09] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M. Ratta, and S. Vora, A 45nm

8-core enterprise xeon processor, Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE

Asian, nov. 2009, pp. 9 –12.

[Sar89] V. Sarkar, Determining average program execution times and their variance, Proceedings of

the ACM SIGPLAN 1989 Conference on Programming language design and implementation,

PLDI ’89, 1989, pp. 298–312.

[SBGC07] S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, Multiprocessor resource allocation for

throughput-constrained synchronous dataflow graphs, Design Automation Conference (2007).

[SDS+11] S. Sawant, U. Desai, G. Shamanna, L. Sharma, M. Ranade, A. Agarwal, S. Dakshinamurthy,

and R. Narayanan, A 32nm Westmere-EX Xeon enterprise processor, Solid-State Circuits

Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, feb. 2011, pp. 74

–75.

[SGB08] S. Stuijk, M. Geilen, and T. Basten, Throughput-buffering trade-off exploration for cyclo-static

and synchronous dataflow graphs, IEEE Transactions on Computers 57 (2008), no. 10, 1331–

1345.

[SGM+05] J. Sztipanovits, C. J. Glossner, T. N. Mudge, C. Rowen, A. L. Sangiovanni-Vincentelli,

W. Wolf, and F. Zhao, Panel session: Grand challenges in embedded systems, International

Conference on Embedded Software (2005), 333.

[SK03] R. Szymanek and K. Krzysztof, Partial task assignment of task graphs under heterogeneous

resource constraints, Proceedings of the 40th annual Design Automation Conference (New

York, NY, USA), DAC ’03, ACM, 2003, pp. 244–249.

[SL05] H. Sutter and J. Larus, Software and the concurrency revolution, ACM Queue 3 (2005), no. 7,

54–62.

[SVCDBS04] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi, Benefits and chal-

lenges for platform-based design, Design Automation Conference, 2004. Proceedings. 41st,

2004, pp. 409 – 414.

[TA10] W. Thies and S. Amarasinghe, An empirical characterization of stream programs and its im-

plications for language and compiler design, Proceedings of the 19th international conference

on Parallel architectures and compilation techniques, PACT ’10, 2010, pp. 365–376.

[Tah03] W. Taha, A gentle introduction to multi-stage programming, Domain-Specific Program Gener-

ation, LNCS (2003), 30–50.

[TB10] D. N. Truong and B. M. Baas, Massively parallel processor array for mid-/back-end ultrasound

signal processing, Biomedical Circuits and Systems Conference (BioCAS), 2010 IEEE, Nov.

2010, pp. 274–277.

121

[TCM+08] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, T. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,

P. Mejia, A. Tran, J. Webb, E. Work, Z. Xiao, and B. Baas, A 167-processor 65 nm computa-

tional platform with per-processor dynamic supply voltage and dynamic clock frequency scaling,

VLSI Circuits, 2008 IEEE Symposium on, june 2008, pp. 22 –23.

[TCM+09] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge, M. Meeuwsen, C. Watnik,

A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia, and B. Baas, A 167-processor computational

platform in 65 nm CMOS, Solid-State Circuits, IEEE Journal of 44 (2009), no. 4, 1130–1144.

[Thi07] L. Thiele, Performance analysis of distributed embedded systems, International Conference on

Embedded Software (2007).

[TKA02] W. Thies, M. Karczmarek, and S. P. Amarasinghe, Streamit: A language for streaming appli-

cations, Proceedings of the 11th International Conference on Compiler Construction, CC ’02,

2002, pp. 179–196.

[TKS+05] W. Thies, M. Karczmarek, J. Sermulins, R. Rabbah, and S. Amarasinghe, Teleport messaging

for distributed stream programs, Proceedings of the tenth ACM SIGPLAN symposium on

Principles and practice of parallel programming, PPoPP ’05, 2005, pp. 224–235.

[TLA03] W. Thies, J. Lin, and S. Amarasinghe, Partitioning a structured stream graph using dynamic

programming, Tech. report, CS Department, Massachusetts Institute of Technology, 2003.

[UDB06] S. Udayakumaran, A. Dominguez, and R. Barua, Dynamic allocation for scratch-pad memory

using compile-time decisions, ACM Trans. Embed. Comput. Syst. 5 (2006), 472–511.

[VR99] R. D. Venkataramana and N. Ranganathan, A learning automata based framework for task

assignment in heterogeneous computing systems, Proceedings of the 1999 ACM symposium on

Applied computing (New York, NY, USA), SAC ’99, ACM, 1999, pp. 541–547.

[WBGB10] M. Wiggers, M. Bekooij, M. Geilen, and T. Basten, Simultaneous budget and buffer size com-

putation for throughput-constrained task graphs, Proceedings of the Conference on Design Au-

tomation and Test in Europe (2010).

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Fer-

dinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Sten-

strom, The worst-case execution-time problem: overview of methods and survey of tools, ACM

Trans. Embed. Comput. Syst. 7 (2008), 36:1–36:53.

[Wen75] K. S. Weng, Stream oriented computation in recursive data flow schemas, Tech. report, Mas-

sachusetts Institute of Technology, 1975.

[WKP11] C. M. Wittenbrink, E. Kilgariff, and A. Prabhu, Fermi GF100 GPU architecture, Micro, IEEE

31 (2011), no. 2, 50 –59.

[XB08] Z. Xiao and B. M. Baas, A high-performance parallel cavlc encoder on a fine-grained many-core

system, International Conference on Computer Design, (ICCD ’08), 2008, pp. 248–254.

122

[YMA+06] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J. Webb, E. Work, T. Mohsenin,

M. Singh, and B. M. Baas, An asynchronous array of simple processors for DSP applications,

IEEE International Solid-State Circuits Conference (2006).

[ZL06] Y. Zhou and E. A. Lee, A causality interface for deadlock analysis in dataflow, Proceedings of

the 6th ACM and IEEE International conference on Embedded software, EMSOFT ’06, 2006,

pp. 44–52.

[ZTB00] E. Zitzler, J. Teich, and S. S. Bhattacharyya, Multidimensional exploration of software imple-

mentationsfor dsp algorithms, J. VLSI Signal Process. Syst. 24 (2000), 83–98.

123

APPENDIX A

Benchmark Applications

This appendix presents the benchmark applications in our new malleable dataflow

model. Details are presented in Chapter 6. The applications are parallel merge sort

(SORT), matrix multiplication (MMUL), fast fourier transform (FFT), low-density par-

ity check (LDPC) and advanced encryption standard (AES). Figures A.1 to A.5 present

graphical representations of the applications.

The task specification starts with a list of forming parameters and their type. The

interface section specifies the set of input and output ports of the task, and the function

section specifies its data transformation function, all based on the given parameters.

Similarly, application specification also starts with a list of forming parameters. The

interface section is the same as task interface. In a composition section, the tasks are

instantiated by assigning the corresponding parameters using the instantiate construct.

The channels are instantiated using the connect construct which connects ports of two

tasks.

N / 3

(A) (B) (C)

N / 8

N

s o r t

m e r g e

s c a tte r

Figure A.1. Parallel merge sort application constructed with A) Φ = (3, 3),

B) Φ = (1, 1) and C) Φ = (8, 2).

124

A2

Am x n x B n x p = C m x p

C p

m

A n

m

B p

n

A B

ro w 7

colum
n 5 C7 ,5

B1

(A)

A3

C

A1
A2 x B 1 = C 2 1(B)

B2 C1 1 C1 2

C3 1 C3 2

C21 C22 B

B1 B2

s c a tte r

c o p y

A m a tr ix

m u ltip ly

A2

A1

A3

(C)

g a th e r

C

Figure A.2. A) Matrix multiply. B) Parallelized matrix multiply for Φ =
(3, 2). C) Task graph with Φ = (3, 2).

(C)(A)
radix-4

radix-2

(B)

(D)

Figure A.3. A) Radix-2 and radix-4 butterfly tasks. B) 16-point FFT
application with radix-4 butterfly tasks. C) The same FFT computed with
radix-2. D) Radix-2 task graph condensed with a factor of 4.

125

1

0

0

0

1

0

V
9

1

0

0

0

0

1

V
10

0

0

0

1

1

0

V
11

C
3

001100010

C
4

101001100

C
5

110100001

C
6

000001010

1

1

V
5

0

0

V
4

0

1

V
3

0

0

V
2

1

0

V
1

C
2

C
1

0

0

V
12

0

1

V
8

0

0

V
7

0

0

V
6 (A) (B)

V
1-12

C
1-6

unrolled 6 times

(C)

(D) (E) V
1-6 C�

1-6

C�
1-6V

7-12

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

V
12

C
1

C
2

C
3

C
4

C
5

C
6

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

V
11

V
12

C�
1

C�
3

C�
2

C�
4

C�
6

C�
5

C�
1

C�
3

C�
2

C�
4

C�
6

C�
5

Figure A.4. LDPC application: A) Sample H matrix. B) Tanner graph.
C) Task graph. Row-Split LDPC with split factor φ = 2 : D) Tanner graph.
E) Task graph.

ark s u b s h f m ix ark s u b s h f ark�
1 6 1 6

(A) re p e ate d 9 tim e s

ark

s u b

s h f

m ix ark ark�
1 6 1 6

(B)

s u b

s u b

s u b

s h f

4
8

4 s u b

s h fs u b

s u b

s u b

s h f

4
8

4

1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6

1 6

re p e ate d 9 tim e s

Figure A.5. AES application: A) Φ = (1, 1, 1, 1) B) Φ = (4, 2, 1, 1).

126

///////////////////////////////////////
///////////////////////////////////////
//// ////
//// SORT ////
//// ////
///////////////////////////////////////
///////////////////////////////////////

//scatter input array into K sub-arrays:
actor Scatter (int N, //length of the input array

int K //number of the output arrays (out-degree)
){

interface {
input input_array (N);
for (i=0; i < K; i++)
output sub_array[i] (N/K);

}
function {
//scatter data

}
}

//sort an array:
actor QuickSort (int N //length of input and output arrays

){
interface {
input unsorted_array (N);
output sorted_array (N);

}
function {
//the quicksort algorithm

}
}

//merge input sorted arrays into one larger output array:
actor Merge (int N, //length of the output array

int K //number of the input arrays (in-degree)
){

interface {
output merged_array (N);
for (i=0; i < K; i++)
input sub_array[i] (N/K);

}
function {
//merge based on the method in mergesort algorithm

}
}

//merge input sorted arrays into one larger output array
//using a tree network constructed out of merge actors:
composite_actor MergeNetwork (int N, //length of the output array

int K, //in-degree of merge actors
int D //depth of the tree

){
interface {
output merged_array (N);
for (i=0; i < K^D; i++)
input sub_array[i] (N / K^D);

}
composition {
//instantiate merge actors
for (d=D-1; d >= 0; d--)
for (i=0; i < K^d; i++)
instantiate Merge merge[d][i] (N / K^d, K, null);

//connections
for (i=0; i < K^D; i++)
connect (sub_array[i], merge[D-1][i/K].sub_array[i%K]);

for (d=D-1; d > 0; d--)

127

for (i=0; i < K^d; i++)
connect (merge[d][i].merged_array, merge[d-1][i/K].sub_array[i%K]);

connect (merge[0][0].merged_array, merged_array);
}

}

//scatter the input array using a tree network of scatter actors:
composite_actor ScatterNetwork (int N, //length of the input array

int K, //out-degree of scatter actors
int D //depth of the tree

){
//similar to MergeNetwork...
}

//sort an array using a ScatterNetwork to distribute the input
//array among a number of QuickSort actors, and a MergeNetwork
//to merge the sorted sub-arrays into the final output array:
composite_actor MergeSort (int N, //length of input and output arrays

int K, //in-degree of merge actors in the tree
int D //depth of the tree

){
interface {
input input_array (N);
output output_array (N);

}
composition {

if (D==0) {
instantiate QuickSort quicksort (N);
connect (input_array, quicksort.unsorted_array);
connect (quicksort.sorted_array, output_array);

} else {

//instantiate a scatter network which distributes
//the input array among K^D sort actors
instantiate ScatterNetwork scatternet (N, K, D);

//instantiate the sort actors
for (i=0; i < K^D; i++)
instantiate QuickSort quicksort[i] (N / K^D);

//instantiate a merge network which merges
//the sorted sub-arrays into the output array
instantiate MergeNetwork mergenet (N, K, D);

//connections:
connect (input_array, scatternet.input_array);

for (i=0; i < K^D; i++) {
connect (scatternet.sub_array[i], quicksort[i].unsorted_array);
connect (quicksort[i].sorted_array, mergenet.sub_array[i]);

}

connect (mergenet.merged_array, output_array);
}

}
}

128

///////////////////////////////////////
///////////////////////////////////////
//// ////
//// FFT ////
//// ////
///////////////////////////////////////
///////////////////////////////////////

actor Butterfly (int i,j, //position of this butterfly group
int K, //radix
int K2D //# of butterflies

){
interface {
input in (K*K2D);
output out (K*K2D);

}
function {
//K2D butterflies of radix K in position [i][j]

}
}

composite_actor FFT (int N, //size of input/output array
int K, //degree of butterfly tasks
int D //condense K2D=K^D butterflies into one
){

interface {
input input_array (N);
output output_array (N);

}
composition {

int numC = (int)(Math.log(N)/Math.log(K)); //# of columns
int numR = N/K; //# of rows
int K2D = powi(K,D);
int i,j,x,X,b,B,j1,j2,jj1,jj2;

//butterfly tasks
for (i=0; i<numC; i++)
for (j=0; j<numR/K2D; j++)
instantiate Butterfly bf[i][j] (i,j, K, K2D);

//connections
for (i=0; i<D; i++)
for (j=0; j<numR/K2D; j++)
connect(bf[i][j], bf[i+1][j]);

//butterfly connections
for (i=D, B=(numR/K2D)/K, X=1; i<numC-1; i++, B/=K, X*=K)
for (b=0; b<B; b++)
for (x=0; x<X; x++)
for (jj1=0, j1=b*X*K+x; jj1<K; jj1++, j1+=X)
for (jj2=0, j2=b*X*K+x; jj2<K; jj2++, j2+=X)
connect(bf[i][j1], bf[i+1][j2]);

if (numR>K2D) {
ScatterNetwork sc (N,numR/K2D);
GatherNetwork ga (N,numR/K2D);
//connections
for (j=0; j<numR/K2D; j++) {
connect(sc.out[j], bf[0][j].in);
connect(bf[numC-1][j], ga.in[j]);

}
connect(input_array, sc.in);
connect(ga.out, output_array);

}
else {
connect(input_array, bf[0][0].in);
connect(bf[numC-1][0].out, output_array);

}
}

129

///////////////////////////////////////
///////////////////////////////////////
//// ////
//// LDPC ////
//// ////
///////////////////////////////////////
///////////////////////////////////////

composite_actor LDPC (int c //row-split factor
){

interface {
input input_array (2048);
output output_array (2048);

}
composition {

int logc = (int)(Math.log(c)/Math.log(2));
int c2id=c, nlid,r1id,gaid,r2id,scid,r3id,r4id;

//Zero Alpha
instantiate Scatter scat (2048,c);
connect (input_array_, scat.in);
for (j=0; j<c; j++)
connect(scat.out[j], ldpctask[c2id+j]);

//LDPC network:
for (int irep=0; irep<rep; irep++) {

nlid = c + c2id;
r1id = c + nlid;
gaid = c + r1id;
r2id = numNetwork(2,logc) + gaid;
scid = 1 + r2id;
r3id = numNetwork(2,logc) + scid;
r4id = r1id;

//C2 Task
for (j=0; j<c; j++) {
instantiate LDPC_C2 ldpctask[c2id+j] (c,j);
connect(ldpctask[c2id+j], ldpctask[r1id+j]);

}

//id for next level C2
if (c==1) c2id=r4id+c; else c2id=r3id+c;

//R Tasks:
if (c==1) {
//R4
instantiate LDPC_R4 ldpctask[r4id] (c);
connect(ldpctask[r4id], ldpctask[c2id]);

}else{//c>1

//gather
instantiate GatherNetwork ga (384*2*c,logc);

//scatter
instantiate ScatterNetwork sc (384*2*c,logc);

//R1
for (j=0; j<c; j++) {
instantiate LDPC_R1 ldpctask[r1id+j] (c);
connect(ldpctask[r1id+j], ga.in[j]);//to gather
connect(ldpctask[r1id+j], ldpctask[r3id+j]);//to R3

}

//R2
connect(ldpctask[r2id-1], ldpctask[r2id]);//from gather
instantiate LDPC_R2 ldpctask[r2id] (c);
connect(ldpctask[r2id], ldpctask[r2id+1]);

130

//R3
for (j=0; j<c; j++) {
connect(sc.out[j], ldpctask[r3id+j]);//from scatter
instantiate LDPC_R3 ldpctask[r3id+j] (c,j);
connect(ldpctask[r3id+j], ldpctask[c2id+j]);//to C2 next level

}
}//if c>1

}//for rep

int gathid = c2id + c + numG(c) - 1;
//C2
for (j=0; j<c; j++) {
instantiate LDPC_C2 ldpctask[c2id+j] (c,j);
if (c>1) //bit -> gather
connect(ldpctask[c2id+j], ldpctask[gathid - numG(c) + 1 + j/4]);

}

//Gather
if ((c==2)||(c==4)) {
instantiate Gather ldpctask[gathid] (2048,c);
connect(ldpctask[gathid].out, output_array);

}
else if ((c==8)||(c==16)) {
for (j=0; j<c/4; j++) {
int gid = gathid - numG(c) + 1 +j;
instantiate Gather ldpctask[gid] (4*2048/c,4);
connect(ldpctask[gid], ldpctask[gathid]);

}
instantiate Gather ldpctask[gathid] (2048,2);

}
}

}

131

///////////////////////////////////////
///////////////////////////////////////
//// ////
//// AES ////
//// ////
///////////////////////////////////////
///////////////////////////////////////

actor SubB (int p, int inputs, int outputs) {
interface {
for (i=0; i < inputs; i++) input in[i] (16/(p*inputs));
for (i=0; i < outputs; i++) output out[i] (16/(p*outputs));

}
function {
//substitute byte algorithm in AES application

}
}

actor AddRK (int p, int roundNr, int pos, int inputs, int outputs) {
interface {
for (i=0; i < inputs; i++) input in[i] (16/(p*inputs));
for (i=0; i < outputs; i++) output out[i] (16/(p*outputs));

}
function {
//add round key algorithm in AES application

}
}

actor ShiftR (int p, int pos, int inputs, int outputs) {
interface {
for (i=0; i < inputs; i++) input in[i] (16/(p*inputs));
for (i=0; i < outputs; i++) output out[i] (16/(p*outputs));

}
function {
//shift row algorithm in AES application

}
}

actor MixC (int p, int pos, int inputs, int outputs) {
interface {
for (i=0; i < inputs; i++) input in[i] (16/(p*inputs));
for (i=0; i < outputs; i++) output out[i] (16/(p*outputs));

}
function {
//mix column algorithm in AES application

}
}

composite_actor AES (int sub, //# of SubB tasks
int shift, //# of ShiftR tasks
int addRK, //# of AddRK tasks
int mixc //# if MixC tasks

){
interface {
input input_array (16);
output output_array (16);

}
composition {

int i = 1, hold = 1, shiftPos, subPos, addRKPos, inputs, outputs;
addRKPos = i + 1;
if (addRK > 1) {
instantiate Scatter aestask[i] (16, addRK);
i++;
for (int k = 0; k < addRK; k++)
connect(aestask[i-1].out[k], aestask[addRKPos++].in[0]);

hold++;
}

//insert AddRK tasks

132

subPos = hold + addRK;

for (int h = 0; h < addRK; h++) {

if (sub <= addRK)

outputs = 1;

else

outputs = sub / addRK;

instantiate AddRK aestask[i] (addRK, 0, h * (16/addRK), 1, outputs);

i++;

if (sub > addRK)

for (int k = 0; k < (sub / addRK); k++)

connect(aestask[i-1], aestask[subPos++]);

}

//Unrolled 9 times:

for (int j = 0; j < 9; j++) {

hold = i - addRK;

shiftPos = i + sub;

//insert SubB tasks

for (int h = 0; h < sub; h++) {

if (sub <= addRK)

for (int k = 0; k < addRK / sub; k++)

connect(aestask[hold++], aestask[i]);

if (addRK <= sub)

inputs = 1;

else

inputs = addRK / sub;

if (shift <= sub)

outputs = 1;

else

outputs = shift / sub;

instantiate SubB aestask[i] (sub, inputs, outputs);

i++;

if (sub < shift)

for (int k = 0; k < (shift / sub); k++)

connect(aestask[i-1], aestask[shiftPos++]);

}

//insert ShirtR tasks

hold = i - sub;

for (int h = 0; h < shift; h++) {

if (sub >= shift)

for (int k = 0; k < sub / shift; k++)

g.addEdge(hold++, i, 16 / sub, ITYPE,STYPE);

if (sub <= shift)

inputs = 1;

else

inputs = sub / shift;

instantiate ShiftR aestask[i] (shift, h*(4/shift), inputs, 1);

i++;

connect(aestask[i-1], aestask[i + shift - h - 1]);

}

if (shift > 1) {

instantiate Gather aestask[i] (16, shift);

i++;

connect(aestask[i-1], aestask[i]);

}

//insert MixC task

instantiate MixC aestask[i] (1);

i++;

if (addRK > 1) {

connect(aestask[i-1], aestask[i]);

instantiate Scatter aestask[i] (addRK);

i++;

}

133

//insert AddRK tasks

hold = i - 1;

subPos = i + addRK;

for (int h = 0; h < addRK; h++) {

connect(aestask[hold], aestask[i]);

if (sub <= addRK)

outputs = 1;

else

outputs = sub / addRK;

instantiate AddRK aestask[i] (addRK, j + 1, h * (16/addRK), 1, outputs);

i++;

if (addRK< sub)

for (int k = 0; k < (sub / addRK); k++)

connect (aestask[i-1], aestask[subPos++]);

}

}

hold = i - addRK;

shiftPos = i + sub;

//insert SubB tasks

for (int h = 0; h < sub; h++) {

if (addRK>= sub)

for (int k = 0; k < addRK / sub; k++)

connect (aestask[hold++], aestask[i]);

if (addRK <= sub)

inputs = 1;

else

inputs = addRK / sub;

if (shift <= sub)

outputs = 1;

else

outputs = shift / sub;

instantiate SubB aestask[i] (sub, inputs, outputs);

i++;

if (sub< shift)

for (int k = 0; k < (shift / sub); k++)

connect (aestask[i-1], aestask[shiftPos++]);

}

//insert ShiftR tasks

hold = i - sub;

addRKPos = i + shift;

for (int h = 0; h < shift; h++) {

if (sub >= shift)

for (int k = 0; k < sub / shift; k++)

connect (aestask[hold++], aestask[i]);

if (sub <= shift)

inputs = 1;

else

inputs = sub / shift;

if (addRK <= shift)

outputs = 1;

else

outputs = addRK / shift;

instantiate ShiftR aestask[i] (shift, h*(4/shift), inputs, outputs);

i++;

if (shift< addRK)

for (int k = 0; k < (addRK / shift); k++)

connect (aestask[i-1], aestask[addRKPos++]);

}

//insert AddRK tasks

hold = i - shift;

for (int h = 0; h < addRK; h++) {

if (shift>= addRK)

for (int k = 0; k < (shift / addRK); k++)

connect (aestask[hold++], aestask[i]);

if (shift <= addRK)

inputs = 1;

134

else

inputs = shift / addRK;

instantiate AddRK aestask[i] (addRK, 10, h * (16/addRK), inputs, 1);

i++;

}

if (addRK > 1) {

hold = i - addRK;

for (int k = 0; k < addRK; k++) {

connect(aestask[hold++], aestask[i]);

}

instantiate Gather aestask[i] (addRK);

i++;

}

}

}

