Machine Intelligence on Resource-Constrained loT Devices:
The Case of Thread Granularity Optimization for CNN
Inference

MOHAMMAD MOTAMEDI, DANIEL FONG, and SOHEIL GHIASI,

University of California, Davis

Despite their remarkable performance in various machine intelligence tasks, the computational intensity of
Convolutional Neural Networks (CNNs) has hindered their widespread utilization in resource-constrained
embedded and IoT systems. To address this problem, we present a framework for synthesis of efficient CNN
inference software targeting mobile SoC platforms. We argue that thread granularity can substantially im-
pact the performance and energy dissipation of the synthesized inference software, and demonstrate that
launching the maximum number of logical threads, often promoted as a guiding principle by GPGPU practi-
tioners, does not result in an efficient implementation for mobile SoCs. We hypothesize that the runtime of a
CNN layer on a particular SoC platform can be accurately estimated as a linear function of its computational
complexity, which may seem counter-intuitive, as modern mobile SoCs utilize a plethora of heterogeneous
architectural features and dynamic resource management policies. Consequently, we develop a principled
approach and a data-driven analytical model to optimize granularity of threads during CNN software syn-
thesis. Experimental results with several modern CNNs mapped to a commodity Android smartphone with a
Snapdragon SoC show up to 2.37X speedup in application runtime, and up to 1.9X improvement in its energy
dissipation compared to existing approaches.

CCS Concepts: « Computing methodologies — Massively parallel algorithms; « Computer systems or-
ganization — Embedded systems;

Additional Key Words and Phrases: Convolutional neural networks, mobile GPUs, thread coarsening, thread
granularity

ACM Reference format:

Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. 2017. Machine Intelligence on Resource-Constrained
IoT Devices: The Case of Thread Granularity Optimization for CNN Inference. ACM Trans. Embed. Comput.
Syst. 16, 5s, Article 151 (September 2017), 19 pages.

https://doi.org/10.1145/3126555

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have remarkable performance in various machine intel-
ligence tasks [6, 8, 21]. Despite CNNs’ performance in classification, they are computationally
intensive. Due to this intensity, it is required to use parallelization approaches for deploying a

This article was presented in the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS) 2017 and appears as part of the ESWEEK-TECS special issue.

Authors’ addresses: M. Motamedi (corresponding author), D. Fong, and S. Ghiasi, Electrical and Computer Engineering
Department, University of California, Davis, One Shields Avenue, Davis, CA 95616; emails: {mmotamedi, dfong, ghi-
asi}@ucdavis.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 ACM 1539-9087/2017/09-ART151 $15.00

https://doi.org/10.1145/3126555

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

https://doi.org/10.1145/3126555
mailto:permissions@acm.org
https://doi.org/10.1145/3126555

151:2 M. Motamedi et al.

CNN on an embedded platform. Most mobile devices are equipped with a modern System on a
Chip (SoC) which offers parallelism in various forms. In order to ship a trained CNN to a mobile
device, it is necessary to judiciously use all of the resources that a SoC offers to achieve the highest
performance in terms of execution time and energy consumption. The research community uses
tools such as Caffe [10] or Torch [4] for training a CNN to perform inference. However, deploying
a trained CNN on an embedded platform is the matter of realizing the inference functionality only
(i-e., the forward path). Hence, the training submodules are disregarded on these platforms.

In one of our previous works [18], we offered Cappuccino: A platform for efficient deployment
of CNN's on mobile devices. Cappuccino receives a trained CNN model as an input, and synthesizes
a parallel RenderScript program to be executed on a mobile platform. Cappuccino takes advantage
of all the available computation hardware (CPU cores, GPU, and DSP) to accelerate the CNN.

In deploying a trained CNN on a SoC, finding the optimal number of logical threads to launch
for each task is a challenging problem and plays an important role in accelerating CNNs on mo-
bile SoCs. In most parallelization problems there is a tendency to select a higher number of logical
threads. Such a choice seems reasonable since increasing the parallelism level is expected to de-
crease the execution time. However, a higher number of threads increases scheduling overhead
and decreases data reusability. Finding a balance to achieve the highest acceleration should be in-
vestigated. In this paper, we address this question: What is the optimal number of threads to launch
per convolutional layer to achieve the fastest execution of a CNN?

Our contributions in this paper are:

(1) We show that unlike common GPGPU recommendations, a CNN-implementation using a
mobile SoC that launches the maximal number of logical threads (finest thread granular-
ity) does not result in the highest acceleration.

(2) In coarser thread granularities, multiple tasks are assigned to a single thread. We offer a
memory-aware task assignment policy which decreases the required memory bandwidth
by taking advantage of inter-thread data locality.

(3) We offer a data-driven analytical model for identifying the best thread granularity for
each layer of a CNN. Furthermore, we update Cappuccino with the proposed model and
synthesize new parallel programs for state-of-the-art CNNs and measure their execution
times. Subsequently, we compare the measured execution times with those of maximally
parallel algorithms and study the impact of thread granularity on the acceleration and
energy consumption.

A maximally parallel algorithm refers to a parallelization methodology that disregards the effect
of thread granularity and launches the maximum possible number of threads for each task. Such
an algorithm is also called parallelization with the finest thread granularity.

2 RELATED WORK

The research community has put forth a number of ideas for accelerating CNNs on embedded
platforms. These efforts can be classified into three major categories.

2.1.1 ASIC-based Acceleration. The main advantage of designing an ASIC chip is to reduce overall
power consumption. Chen et al. designed an ASIC chip for accelerating CNNs [3], which was able
to achieve a speedup of 450X compared to a high-end GPU. In a similar work, Google has developed
Google TPU to accelerate machine learning processes that use TensorFlow [11].

2.1.2 FPGA-based Acceleration. Researchers have proposed different approaches for FPGA-based
acceleration of CNNs. Chakradhar et al. offered an accelerator that uses dynamic reconfigurabil-
ity to increase the throughput [2]. Zhang et al. took a similar approach to decrease the required

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:3

+—— Hout —

+=—— Hin ——
=

Fig. 1. A convolutional layer of a CNN. Two kernels (green and orange) get convolved with IFMs to generate
two OFMs.

memory bandwidth by using the on-chip memory efficiently [22]. Motamedi et al. further im-
proved this approach by exploiting kernel level parallelism [19]. There are many proposals of
different accelerator architectures for accelerating CNNs on FPGAs. Reviewing all the research in
this area is out of the scope of this paper.

2.1.3 Mobile SoC-based Acceleration. The last approach for using CNNs on embedded platforms
is SoC-based acceleration of CNNs. Mobile SoCs are flexible and support parallelism at different
levels. Moreover, this platform has been in commodity mobile devices and are extensively-used
by many users daily. Oskouei et al. offered a library for parallel-execution of CNNs on Android
devices [14]. We further improved that work by offering inexact computing and analyzed its im-
pact on classification accuracy. Moreover, we offered a new approach for utilizing sub-word par-
allelism with zero reordering overhead [17]. Subsequently, we created Cappuccino: A platform
for efficient deployment of CNNs on mobile devices [18]. In this work, we focus on the impact
of thread granularity on the execution time and energy consumption. We develop a data-driven
model to optimize granularity of threads for parallel execution of CNNs. Subsequently, we show
that an optimal choice of thread granularity can accelerate a parallel algorithm by up to 2.37X and
decrease its energy consumption by 1.9X.

The problem of finding the optimal number of threads to launch on a platform is called thread
granularity or thread coarsening. This problem has been studied for server-grade GPUs. Magni
et al. performed a study on the impact of thread granularity on acceleration for four GPUs [16].
They continued this work and offered an approach for optimizing thread granularity on the same
GPUs [15].

The problem of selecting the best thread granularity for mobile SoCs is complicated because
the target platform has a heterogeneous architecture. This allows threads to be mapped to the
available CPU cores, GPUs, and DSPs. In addition, most SoCs share the same memory among all
processors which leads to a more non-deterministic memory access time. The problem of selecting
an optimal thread granularity for a mobile SoC has yet to be addressed.

3 INFERENCE USING CNNS

CNNs include millions of parameters which are obtained during the training phase. These param-
eters maintain the knowledge of a CNN about the classification task for which it has been trained.
Using these parameters, a CNN extracts features from an input and uses those features to deter-
mine to what class the input image belongs. The classification procedure queries a CNN’s forward
path, which is a time-critical application. In this research we concentrate on efficient deployments of
the forward path on mobile SoCs.

A CNN includes some convolutional layers. Each convolutional layer has three main compo-
nents: Input Feature Maps (IFMs), Output Feature Maps (OFMs), and Kernels. We use N to show
the number of IFMs and M to show the number of OFMs. Figure 1 shows one convolutional layer.
The height and width of IFMs are shown by H;, and W;,, respectively. Likewise, Hy,r and Wy,
show width and height of OFMs, respectively. Each convolutional layer includes M kernels whose

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:4 M. Motamedi et al.

CNN Des.

CNN Param.

Cappuccino
Program Synthesizer

Data Order Optimizer —|—>

AEEIication

[RenderScript API

Caffe

Android

[Thread Scheduler

Mobile device

Renderscript Code

Storage
CPUs

Fig. 2. Cappuccino needs the CNN description and the CNN parameter files. It uses the former to synthesize
a RenderScript program and the latter to improve the efficiency of memory system.

- -
layer { float _attribute_((kernel)) conviuimt3z_t x) {
name: “convi/7aT_s2" int32_t w = {x / 4) % Wout;
typer “Convolution” ANtz t b= (((x - 4 * W) 7 4} / Wout) ¥ hout;
bottom: “data® AntI2_t m= {5 X &) + {x / (4 % Wout * Hout)) * 4;
tops “convl/Tx7_sz" intaz t m, 4, §;
param {.} Float cutd = rabetElesantat_float(bias, =);
convsl

ran { int32_t basel = K * K * (N / 4);
rn For (n o= 8 0o (N[A); mes)
For (L= 8 &< K Les)

ze: 7 for (3= 85 3 < Ky Jeed
st imt32t base2 = (1) « (K * 1) + (K * K * 0}y
waight_filler (-} Ant32 t ifm Adr = (W * 5 + 1 - pad)
blas_filler {_} Min * (h * 5+ j - pad) + (Win * Hin * n)
floatd ifm = rsGetElementat_floatd(in, ifm_Adr);
¥ Floatd wghtd = rsGetilesentAt_flostd(weight,
- baseZ +{basel * m));
outd += dot(ife, wghtd); }

at - ox;

- int32_t based = off
CMM Des. in .prototxt file int32_t based = Wout * Howt * parallelOfka;

raSetElementat_float{output, outd, based);

y
Synthesized Software

Fig. 3. Cappuccino uses a CNN description file (left side) to synthesize a RenderScript program (right side).
Color coding is used to show relationships between parameters in the description file and generated program.

height and width is shown by K. The number of kernels is equal to the number of OFMs because
each OFM is the result of a 3D convolution of one kernel with IFMs.

Each convolution kernel has to be slid over input feature maps with the stride of S. At every
location, we perform a 3D convolution between the kernel and corresponding pixels from IFMs. the
result of this convolution is a pixel in the OFM. In Figure 1, two convolution kernels get convolved
with IFMs. The results are two OFMs. The color code is used to depict that each convolution kernel
creates a separate OFM.

4 OVERVIEW OF CAPPUCCINO

While Caffe [10] is one of the dominant platforms for training a CNN, it offers little support for
shipping a trained model to a resource-constrained embedded system. To address this, we devel-
oped Cappuccino [18] which takes a trained Caffe-model and automatically synthesizes a highly-
parallel implementation of it for Android devices. In this section, we briefly overview Cappuccino.

To start the code synthesis process, Cappuccino needs a Caffe model file (.caffemodel) and a
CNN description file (.prototxt), which contains the CNN’s parameters (weights and biases) and
describes the network architecture respectively. Cappuccino then gives this information to the two
main submodules: the Program Synthesizer and the Data Order Optimizer. A high-level diagram
of the system can be seen in Figure 2.

The Program Synthesizer reads the CNN descriptions and synthesizes a RenderScript-based,
parallel program. It also optimizes the generated programs parameters to minimize the execution
time. The process that Cappuccino uses to synthesize the output code is briefly summarized in
Section 4.1. Figure 3 shows a sample CNN description file and the generated parallel program for it.

The second submodule of Cappuccino is the Data Order Optimizer, which is responsible for
changing the order of inputs and weights from column/row major to depth major to maximize
memory bandwidth utilization. It is worth mentioning that the reordering process does not
increase the data size and is an offline process. Reordered parameters will be written in a

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:5

mobile device’s storage (internal storage or SD card). Subsequently, the synthesized RenderScript
program can be launched on the platform as an application.

Cappuccino generates a RenderScript program which fully utilizes the RenderScript APIs to
maximally accelerate a given CNN. However, RenderScript runtime controls the thread scheduling
process. Hence, different applications, including those generated by Cappuccino, must rely on the
RenderScript thread scheduler. The RenderScript runtime utilizes all processors which are available
on a device, such as CPU cores, GPU, and DSP to run a parallel program.

4.1 Acceleration Strategy

Cappuccino takes two general approaches for accelerating CNNs: inexact computing and parallel
processing.

4.1.1 Inexact Computing. CNNs are robust against errors that are introduced with inexact
computing. Gysel et al. has shown that implementing CNNs with dynamic fixed point, 16-
bits, and 8-bits fixed point arithmetic has minimal impact on the classification accuracy [5].
On most embedded platforms, however, it is not possible to implement a custom accelerator.
Therefore, on such platforms, inexact computing takes the form of imprecise computing modes
that a system supports.

Android devices support two inexact computing modes which can potentially expedite the com-
putation at the cost of decreasing the accuracy. The first inexact computing mode, which is called
relaxed computing, optimizes the efficiency by inaccurate handling of de-normalized numbers. The
second mode, which is called imprecise computing, further improves the efficiency by the inaccu-
rate process of INF, NaN, and —0.0/ + 0.0. Utilizing imprecise/relaxed computing allows efficient
use of hardware by enabling SIMD instructions on CPUs. Hence, the program that is synthesized
by Cappuccino can be mapped to a higher number of threads which yields higher acceleration.
However, before using imprecise/relaxed computing, it is necessary to consider their impact on
the classification accuracy.

Cappuccino takes a layer-by-layer approach for this assessment. It changes the computation
mode for one CNN layer at a time to evaluate its effect on the execution time and the classification
accuracy. For example, Cappuccino can evaluate the impact of using inexact computing in a layer
on the classification performance of the entire network. Therefore, it can determine which com-
putation mode, out of the three imprecise, relaxed, or precise choices, best fits a particular layer
of a given CNN model.

4.1.2 Parallel Processing. CNN architectures lend themselves well to parallel-processing algo-
rithms. To explain, consider that all OFMs in a layer can be computed in parallel. Furthermore,
computing different pixels in an OFM is a perfectly parallel workload, and each OFM pixel is sim-
ply the dot product of the IFM pixels and the weights, an operation that can be performed in
parallel. Cappuccino uses all of these sources of parallelism to generate a RenderScript program
which fully utilizes the available resources on a target SoC. This process is briefly mentioned here:

Thread workload assignment: For each layer, Cappuccino assigns one thread per each pixel of
OFMs. Therefore, the number of logical threads for each layer will be equal to the sum of all pixels
of all OFMs in that layer. The current thread assignment policy uses the finest thread granularity
(i.e., it maximizes the number of logical threads and minimizes the amount of workload per thread).
As we will discuss in this paper, this is not the most efficient task assignment policy.

Sub-word Parallelism: Cappuccino uses multithreading to exploit the Thread Level Parallelism
(TLP) that a platform offers. In this context, TLP includes CPU, GPU, and DSP threads. Single
Instruction, Multiple Data (SIMD) is offered in the form of sub-word parallelism on mobile devices,

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:6 M. Motamedi et al.

SoC
CPU

U Ll g
| | R | | e I

Fig. 4. Whenever possible we use sub-word parallelism inside each thread to parallelize its workload
internally.

NoVLIW

and can be used to further improve the execution time. Using SIMD, Cappuccino parallelizes the
task of each thread internally as it is illustrated in Figure 4.

Each thread’s task is conceptually a dot product computation. This task is accelerated using
SIMD instructions to minimize inter-thread data transfer, thread synchronization, and to maxi-
mize the cache efficiency. To fully-utilize SIMD instructions, Cappuccino changes the data order
to maximize the memory bandwidth utilization and optimizes the loop order to improve cache
performance. However, the detailed information of the algorithms that Cappuccino uses for par-
allelizing CNNs on Android devices is out of the scope of this paper.

5 PROBLEM STATEMENT

In accelerating an algorithm on SoCs, finding the optimal number of logical threads to launch
is a challenging problem. Having a finer thread granularity increases the utilization of available
parallel resources on a SoC. However, this imposes extra scheduling overhead and reduces data
reusability. As we will show in Section 7, choosing an optimal thread granularity improves the
execution time of CNNs drastically. In this paper, we consider the following question: What is the
optimal number of threads to launch per convolutional layer to achieve the fastest execution of a CNN
on a given platform?

To answer this question, we developed a data-driven analytical model to predict the execution
time for different thread granularities. We use this model to determine the best granularity to use,
and update the thread assignment policy of Cappuccino. We will show that the proposed solution
yields near ideal results for different CNNss.

6 THREAD GRANULARITY OPTIMIZATION

Thread granularity indicates how many threads are invoked for running a parallel workload. In
the case of using the finest thread granularity, the number of threads are limited by the num-
ber of independent subtasks that exist in a workload. Coarsest thread granularity is the case in
which only one thread is used (i.e., a sequential program). Both finest and coarsest thread gran-
ularities are two extreme cases, and there is a trade-off between the number of threads used
and computational load per each of them. In this section, we show that these extreme cases do
not yield optimal acceleration rates. Subsequently, we offer a performance prediction model that
can be used to estimate what thread granularity results in the best acceleration for each layer
of a given CNN.

6.1 Thread Granularity

For a convolutional layer in a CNN, assume Hyy, ¢, Woy,;, and M show height, width, and the number
of Output Feature Maps (OFMs), respectively. In the naive approach of using the finest thread
granularity, Equation (1) gives the number of logical threads required for parallelizing this layer.
We use parameter « to refer to this number in this paper.

a=MXWyyus X Hoyy (1)

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:7

nieE
2
D]
|m -
T [
el e
M‘*“:-':‘:’-EE
B
(OFM i
om~[oFmit1
Laye [F]
- OFMi+2

Fig. 5. Task assignment choices for thread granularities with (g > 1).

To have a coarser granularity, each thread should compute g pixels instead of one. A higher value
of g, gives a coarser thread granularity. For this case, the number of logical threads, f3, can be found
using Equation (2).

p=alg ()
Each 3D convolution consist of N different 2D convolutions where N is the number of IFMs (i.e.,
to compute a 3D convolution it is required to perform a series of 2D convolutions). Therefore, in
the rest of this section we focus on efficient workload assignment for a 2D convolution.

6.1.1 Memory Access Optimization. In thread granularities with g > 1, it is required to select
(g9 — 1) extra pixels for each thread to compute. To illustrate this problem, consider an OFM shown
in Figure 5. When g equals one (finest granularity), thread (m, n, i) is responsible for computing the
value of pixel A in the OFM. When g is greater than one, the thread granularity is coarsened and
this thread becomes responsible for computing the value of additional pixels. However, this selec-
tion must be carefully considered due to potential trade-offs. Here we offer an efficient workload
assignment mechanism, and consider the following three policies to guide this selection:

Workload Assignment Policy 1: The first policy is selecting a pixel from another location of the
same OFM (e.g., pixel G or B in Figure 5). Pixels in the same OFM share the same kernel (i.e., their
value is the result of convolving the same kernel with different locations of IFMs). Hence, when
a thread loads parameters of that kernel from the memory, the parameter can be used g times.
Therefore, assuming the kernel dimension is denoted by K, for computing an output element, it
is required to load K? pixels from IFMs, load the kernel (K? elements) and write the result back:
2K? + 1 memory accesses. However, for a coarser thread granularity (g > 1), kernel gets loaded
once and will be used g times. In this case, the number of memory accesses to compute one output
element, y, can be found using Equation (3).

y =K*/g+K*+1 (3)

In the special case when the selected pixel is adjacent to the original pixel (e.g., pixel G), memory
accesses can be optimized further. The values of pixels G and A are computed from overlapping
regions of IFM pixels. Hence, part of the IFM pixels are shared and can be loaded once and be
used g times. The effectiveness of such an optimization depends on the values of g and stride (S).
For example, when K < S or K = 1, such an optimization is ineffective. However, for most cases
the required number of memory accesses in this selection policy is less than or equal to y (i.e.,
YPolicy1 < }/)

Workload Assignment Policy 2: In this policy, the selected pixel belongs to the same location
of another OFM (e.g., pixel C or E in Figure 5). These pixels are the result of convolution of the
same IFM with different kernels. Hence, if we use this workload assignment policy for a coarser

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:8 M. Motamedi et al.

B1\\| Z TN 32 A - i a0 — —ING_te_Ial N4 il — —IhG_Sb_a3
7 ptat Gearestaritien

™,

Execution Time imsl
i1

Highest Rumbr ol Thevack
[rt————
&

1 Thread Granularity (]

-

1 a

Fig. 6. Execution time of five different layers of GooglLeNet for different thread granularities on Google
Nexus 5. Finest thread granularity (maximally parallel) yields sub-optimal execution time.

thread granularity (g > 1), IFMs will be loaded from the memory once, but will be reused g times.
Computing the number of memory accesses in this case is very similar to the first policy. In order
to compute a pixel in an OFM, it is required to load K? pixels from IFMs and K? pixels from kernels.
For coarse granularity, these pixels are used for computing all g output pixels. Hence, Equation (3)
yields the number of memory accesses. Notice that with this policy the kernels no longer overlap,
there is no further memory reuse optimization (yporicy2 = y)

Workload Assignment Policy 3: In this policy, which is the naivest approach, there is no con-
straint on location or OFM from which we select an extra pixel (e.g., pixel D or F in Figure 5). Such
a selection offers no memory optimization since these pixels share neither IFMs nor kernel values.
In this case, the number of required memory accesses is 2K? + 1. The only advantage of this policy
is ease of implementation.

The first policy allows the highest memory optimization. However, implementation is suffi-
ciently difficult and the generated program is hard to read and maintain. We use this policy when
it offers an optimization over Policy 2 (i.e., when yp; < y). Otherwise, we use the second policy.

6.1.2 Case Study: Effect of Different Thread Granularities on GooglLeNet. We implemented the
aforementioned policies, in Cappuccino to create a range of thread granularities from fine to
coarse with the values shown in Equation (4). We used this to synthesize a RenderScript-based
implementation of GoogLeNet [21] and measured the execution time. GoogLeNet is a very deep
CNN which was designed by Google. This CNN won in the 2014 ImageNet large-scale visual
recognition challenge (ILSVRC) [20]. In the next subsection, we use some layers of GoogLeNet
to highlight: 1) The finest thread granularity has a sub-optimal performance. 2) There is no single
thread granularity that yields the optimal performance for different CNNs or even for different
layers of the same CNN.

g€ {1,2,4,8,16,32) (4)

Figure 6 shows the execution time of five different layers of GoogLeNet for various thread
granularities and Table 1 shows detailed characteristics of these layers.!

We performed similar experiments on different devices and different CNNs. In all of them, we
observed analogous patterns, which are summarized below.?

IExecution times are measured on a Google Nexus 5 phone. Each experiment has been repeated 100 times and the average
execution time is computed.

2 Additional experiments have been performed on Google Nexus 6P and Samsung Galaxy S7. Generic patterns are discussed
here which are observed on all phones for different CNNs (GoogLeNet, SqueezeNet [8], and AlexNet [13]).

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:9

Table 1. Specifications of Five Different Layers of GooglLeNet and the Optimal Thread Granularity for

Each of Them for Execution on Google Nexus 5

Layer Name N M W, H, K #MACOps BestGranularity (g)
Inception_3a_3x3 9% 128 28 28 3 28,901,376 8
Inception_3b_3x3_reduce 256 128 28 28 1 25,690,112 16
inception_4c_1x1 512 128 14 14 1 12,845,056 4
Inception_4e_1x1 528 256 14 14 1 26,492,928 16
Inception_5b_3x3 192 384 7 7 3 10,838,016 4

The variables are as follows: N (number of [FMs), M (number of OFMs), W;,, (IFM width), H;, (IFM height), and K
(kernel dimension).

Lessons Learned on SoC-Based Acceleration of CNNs:

(1)

Using the finest thread granularity (g = 1), is not always the best solution. In paralleliz-
ing a task, generating the highest number of logical threads seems favorable because it
increases the parallelism. While this normally yields the best results for accelerating an
algorithm on server-grade GPUs, this is not the case for embedded platforms. Since mobile
SoCs are designed to operate within a restricted power budget, they have limited comput-
ing power (small number of cores). As a result, defining a high number of logical threads
does not necessarily decrease the execution time because those threads will be executed
as multiple batches in sequence. In other words, the limited resources forces a sequential
execution; Hence, increasing the number of logical threads only imposes further schedul-
ing overhead. In addition, the finest thread granularity prevents utilization of the memory
optimization approaches that we introduced in Section 6.1. Therefore, it is predictable to
have poor performance in fine thread granularities. In our experiments, we observed that
the finest thread granularity always performed sub-optimally.

There is no single thread granularity capable of yielding the minimal execution time for all
layers in a CNN. A thread granularity that performs well for one task might have inferior
performance for another. For example, consider the thread granularity with the value of
(g = 8) for layers INC_3a_3x3 and INC_4c_1x1 shown in Figure 6.

Different classes of SoCs result in different optimal thread granularities when presented
with similar workloads. This is explained by the varying compute capability between dif-
ferent SoCs (number of cores and on-chip resources). We noticed that for the same task,
high-end SoCs tended to perform better with finer granularities, and low-end SoCs per-
formed better with coarser granularities.

6.2 Analysis of Characteristics of Convolution

In this subsection, we explore the characteristics of convolution as a workload. We try to find a
relationship between the optimal thread granularity and the computational complexity of a con-
volutional layer.

6.2.1

Computational Complexity. To compute OFMs of a layer (dimensions: M X W,y X Hoyy),

it is required to slide convolution kernels (M kernels, dimensions of each: N X K x K) over IFMs
(dimensions: N X W;,, X Wy,,;) with the stride of S and compute a 3D convolution at every location.
The number of MAC (Multiply-accumulate) operations required for computing OFMs is shown in
Equation (5). We use the term Computational Complexity to refer to this number.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:10 M. Motamedi et al.

R-square = 0.8

Execution Time (ms)

. Comput_ational Cc:mplexity .

0 2 4 6 8 10 12
x107

Fig. 7. Execution time of different convolutional layers based on their computational complexity. It is ex-
pected to witness a linear relationship between computational complexity and execution time. However,
DVFS imposes a lot of irregular patterns.

N X Wi X Hip X K* x M

i ©)
For comparison purposes, computational complexity is an acceptable metric for estimating the
expected execution time of different algorithms. We use this metric to compare execution times
of different convolutional layers for the same algorithm. On this ground, it is reasonable to expect
a linear relationship between the execution time and the computational complexities of different
convolutional layers. Figure 7 shows the execution time of different convolutional kernels (Units:
ms) versus their computational complexity (Units: Number of MAC operations). Even though this
data has a semi-linear pattern, it includes a large number of irregularities: 1) Convolutional layers
with the same computational complexity have different execution time (an example is shown by
region A in Figure 7). 2) Some layers with the same execution time have different computational
complexity (an example is shown by C in Figure 7). 3) Some layers with a smaller computational
complexity have a larger execution time compared to another layer with a larger computational
complexity (an example is shown by B in Figure 7).
We hypothesize that such irregularities are caused by:

Computational Complexity =

1) Resource sharing and multitasking: The platform we used for performing the exper-
iment is a multitask platform which host many processes. Even though we killed all of
the redundant tasks before every experiment, processes owned by the system remained
active. Due to the nondeterministic nature of such tasks, they impose some level of noise
to measurement.

2) Dynamic Voltage and Frequency Scaling (DVFS): DVES is a technique which is used
for adjusting the voltage and frequency of a processor based on the present computational
load and the chip temperature. Load is the aggregated system demand, which can be from
different processes.

These two factors explain the irregularities seen in Figure 7. We have already minimized the
effect of the first factor. Hence, DVFS is responsible for most of the irregularities that we observed.
In what follows, we disable the operating system’s control over DVFS and perform the same ex-
periments. Controlling DVFS in the super user mode increases the temporal determinacy of the
platform and helps us in interpreting the results.

6.2.2 Beyond Restrictions of the Operating System. Similar to other operating systems, Android
restricts user-access to some system-level settings for security and stability reasons. Therefore, in

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:11

200

f(x) = 1.661e-6x+8.7.
f(x) = 2.82e-6x+13.4

R-square = 0.91, ?-square =0.95

150

*

Execution Time (ms)

900 MHz
1497 MHz
Other frequencies

100

* +

50

X Compu_tational Cgmplexitvl

0 ; ;l 6 8 10 12

%107
Fig. 8. Frequency based clustering of experiments. In each cluster, there is a linear relationship between the
computational complexity and execution time.

order to gain control of the entire system, it is required to attain privileged access (also known as
root access or superuser access). The process of modifying the default settings for obtaining the
privileged access is called rooting. Controlling the power governor and DVEFS is among those set-
tings that demand superuser privilege. Hence, we rooted our device to attain control over them.?
The platform that we use, has ten potential working frequency ranging from 300 MHz to 2.2 GHz.
We froze the frequency of the platform on all ten possible values and repeated all experiments.
Subsequently, we compared the achieved execution times with those shown in Figure 7 and com-
puted the difference. In comparison, when the difference between a newly measured execution
time under the frequency of f with a value of Figure 7 was less then 1%, we concluded that the old
value is measured when the processor was working with the frequency of f. The results of this
comparison for f = 900MHz and f = 1497MHz are shown in Figure 8. As this figure illustrates,
dividing the execution time to different clusters based on the frequency makes it easier to interpret
the runtime measurements. In Figure 8, one cluster is shown by black circles and another by black
plus signs (+). The data of each cluster is less chaotic and has a linear pattern. As the computational
complexity directly impacts the execution time, it is not surprising to observe a linear relationship
between these two.

We used curve fitting to determine how successful a linear fit is in explaining the variation of
data in each cluster. Equations (6) and (7) show these lines. The value of R? for the first one is 0.91
and for the second one 0.95. R? is the square of the correlation between the response values and
the predicted response value. This statistical parameter indicates how successfully a fit represents
the data. The value of R? varies between zero to one. Values close to 1 indicate that a greater
proportion of variance is accounted by the model. The value of R? in Figure 7 where the line is
fitted to all data rather than small clusters is 0.8.

fooonrrz(x) = 2.82 X 107 X x + 13.49 (6)

frao7mpz(x) = 1.661 X 107° X x + 8.734 (7)

Clustering the execution times based on the frequency of the processor at the time of measurement
makes it possible to fit a more representative model on each cluster. We use such models to predict

the execution time of a convolution layer on a given processor with a given working frequency.
Subsequently, we extend this model to predict the execution time for different thread granularities.

3In 2010, the U.S. Copyright office permitted rooting by explicitly exempting it from Digital Millennium Copyright Act [1].
Notice that rooting is different from unlocking. All mobile devices that are used in this research were unlocked.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:12 M. Motamedi et al.

20 T T T
/ 1

\

w

Eu-,/ /

E

F 4 / —a-

c o —g=2

2 / g=4

30 p —g=8

g 10 ’ > = := i

] / =32

Z g
5 A B C D, . E < iF o G\
04 0.6 0.8 1 1.2 14 16 1.8 2
Computational Complexity <107

Fig. 9. Linear Regression Result for different thread granularities (g € {1, 2,4, 8, 16,32}). Optimal thread
granularity varies based on the value of computational complexity.

6.3 Analytical Model for Granularity Selection

Using a learning based system, it is possible to predict the execution time of a given convolutional
layer for different thread granularities. The result of such a prediction can be used to determine
which thread granularity performs the best for a given convolutional layer on a certain SoC.

6.3.1 Execution Time Prediction Using Linear Regression. In the previous sections we explained
that it is possible to use a linear model for predicting the execution time if two conditions are
satisfied: 1) The processor’s frequency is fixed. 2) The performance prediction model is trained for
a certain thread granularity (i.e., granularity is fixed). We ran six version of GoogLeNet with the
thread granularities shown in Equation (4) and measured the execution time. Subsequently, we
used the results to train six different models fif,¢q,4)(x) where in all six models the value of freq
equals to 1497MHz. These models are shown in Equations (8) to (13) and illustrated in Figure 9.

ft1ao7ntrz,g=1)(x) = 1.661 X 107 X x + 8.734 (8)
ft1a97M 2, g=2)(x) = 1.059 X 107 X x + 5.682 9)
J1a97MHz g=a)(x) = 7.915 X 1077 X x + 3.707 (10)
Jt1a07Mz,g=8)(x) = 7.171 X 1077 X x + 4.557 (11)
fu1a07Mtrz, g=16)(x) = 7.001 X 1077 X x + 4.997 (12)
fao7ntrz, g=32)(x) = 9.775 x 1077 X x + 2.7961 (13)

Some thread granularities always yield an inferior performance. For example, it is easy to deter-
mine that g = 1 or g = 2 never have the best execution times. This observation for g = 1 is more
important for two main reasons. First, unlike the default expectation, when the algorithm is maxi-
mally parallelized (finest thread granularity) it does not have the minimum execution time. Second,
the optimal thread granularity performs up to 4x faster in some cases. This indicates that the impact
of finding the optimal thread granularity on execution time is considerable. As Figure 9 illustrates,
based on the value of computational complexity, it is possible to define seven regions where dif-
ferent thread granularities perform faster. For example, in the first domain (labeled A in Figure 9)
the order of thread granularity performance, ranked from slowest to fastest, is (1, 2, 16, 8, 4, 32).
Therefore, for a convolutional layer whose computational complexity is in this region, one should
use a thread granularity of g = 32 to achieve the fastest execution. Likewise, in the domain labeled
D the order of performance is (1, 2,32, 16, 8,4) and the highest acceleration would be with using

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:13

g = 4. Our model allows a user to select the best thread granularity for a convolutional layer by
simply computing its computational complexity.

6.4 Model Constraints

The offered solutions has two main constrains: First, it is only valid for a certain frequency (in
this case 1497MHz). Second, the model is platform dependent. In this subsection we address these
constraints.

6.4.1 Frequency Scaling. We adopt a linear performance scaling model, with respect to DVES.
Such a model may not be perfectly accurate for performance prediction due to a number of rea-
sons such as components on the SoC that do not support DVFS. However, our intuition is that it
will have high fidelity [7, 9] for comparing different thread granularities, and thus, would serve
the purpose of thread granularity optimization. Specifically, we use Equation (14) to estimate the
execution time under granularity g and frequency f2, where x is the computational complexity.
In Section 7, we evaluate the model for different frequencies.

fipa) = 22 “’g)z) =l (14)

6.4.2 Model Portability. The model we obtained is only valid for the platform on which we
created the training examples (i.e., execution times for different granularities). In other words, a
trained model has knowledge about the characteristics of a particular SoC and use it to estimate
how different thread granularities perform for a given workload. Since different SoCs can vary in
many aspects, it is not possible to use a trained-model from one SoC on a different SoC. While
this data is not portable, the training of the model can be repeated. Based on the result of this
research, we modified Cappuccino to create a learning submodule in each project. In the first run,
this learning toolkit will be used to run sample convolutional kernels in order to determine the
computational capabilities of a SoC and finding the SoC specific regression parameters. These
parameters can then be used to find the best thread granularity for each layer of any CNN. In
Section 7, this approach is used for finding best thread granularities for different CNNs on a new
platform. The results are shown in rows #1 to #3 of Table 3.

7 EXPERIMENTAL RESULTS

In this section we evaluate the effect of thread granularity on the acceleration and its energy
consumption. We use our experimental results to demonstrate two points: First, we show that
thread granularity plays a major role in the execution time of a parallel algorithm on a SoC. Our
experimental results show that selecting an optimal thread granularity can speedup a maximally
parallelized algorithm by up to 2.37X. In a maximally parallelized algorithm, the number of defined
threads is equal to the number of output elements (g = 1). Second, we use the experimental results
to validate that the offered model predicts the correct granularity precisely. We test the model for
different CNNs under various frequency conditions and show that the proposed model achieves
near-ideal results.

7.1 Platform Specification

Experiments have been performed on a Google Nexus 5 phone and a Google Nexus 6P phone.
Nexus 5 is equipped with a Snapdragon 800 SoC and Nexus 6P has a Snapdragon 810 SoC. Snap-
dragon 800 has a Krait 400 (ARMv?7) processor which has four cores. Each of these cores have a
128-bit ALU which allows them to support Very Large Instruction Words (VLIW). The SoC also

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:14 M. Motamedi et al.

has an Adreno 330 GPU with unified shader which has 128 ALUs. The last co-processor of this
SoC is a Hexagon (QDSP6) DSP which supports both Dynamic Multi Threading and VLIW.

We rooted the phone to control the SoCs DVFS. Some experiments were performed with a fixed
frequency by turning off DVFS, while others used the default mode with active DVFES in which the
performance governor decides the operating frequency. In all cases, we put the phone on airplane
mode and killed all unnecessary processes to minimize the disturbance to our experiments from
other tasks.

7.2 Data Acquisition

7.2.1 Training Data. As we explained in the previous section, we trained our granularity selec-
tion model by measuring the execution time for each convolutional layer of GoogLeNet using a
fixed frequency of f = 1497MHz. The regression parameters for this frequency were then scaled
to find the regression parameters for other frequencies.

7.2.2 Test. To evaluate the effectiveness of our achieved model, we used it with three CNNs,
namely AlexNet, SqueezeNet, and GoogLeNet, over several working frequencies. AlexNet is widely
used for performance comparison in different CNN acceleration work. Hence, it allows us to com-
pare our results with prior art. We used two other well-known CNNs, SqueezeNet and GoogLeNet,
to demonstrate our results are not CNN-dependent. SqueezeNet is tailored towards IoT applica-
tions, given its small memory footprint. GoogLeNet is an incarnation of the Inception architecture
developed by Google. The Inception family has state-of-the-art performance in classification and
is being used by Google [12]. For each layer of these CNNs, we measure the execution time for the
following cases:

(1) Baseline: Cappuccino synthesizes its original maximally parallel program using the finest
thread granularity for all convolutional layers. As mentioned previously, the execution
time for this case is never the fastest, but serves as a control for comparing the performance
enhancement using our model. In a maximally parallel algorithm, the number of logical
threads is equal to the number of output elements. Hence, each thread is responsible for
computing one pixel in one Output Feature Map (g = 1). The parameter g is defined and
explained in Section 6.1.

(2) Proposed: Cappuccino uses the model we created to predict the best thread granularity
for each convolutional layer of the given CNN. The execution time is used as a perfor-
mance metric to compare against the baseline and ideal thread granularities.

(3) Ideal: Gauging how well our model is performing requires an understanding of the ideal
granularity’s performance. To gain this insight, we measured the execution time of all
thread granularities for every convolutional layer of the given CNN. The one that yielded
the shortest execution time was labeled to be the ideal granularity and its execution time
is used to quantify how well our model performed.

Each experiment was repeated 100 times for reproducibility, and the average execution time and
standard deviation are reported in Table 2.

7.3 Training Frequency

We used the frequency on which the original model was trained (f = 1497MHz) to evaluate the
model in this first round of experiments. Keeping the training and testing frequency invariant
allowed us to investigate how well our model performs on CNNs that it was not trained on without
changing too many variables.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:15

Table 2. Impact of Thread Granularity on Execution Time. Each Experiment has been Repeated 100 Times
and Results are Reported in the Form of a +s. Where a is the Average and s is the Standard Deviation. All
Experiments are Performed on Nexus 5 and for All of Them Background Processes are Killed

Freq. Execution Time (ms) Diff.
CNNName DVFS (MHz) Baseline Proposed Ideal with ideal ~ Speedup
1 GoogLeNet Ooff 1497 3267 + 182 1389 + 116 1331 £ 113 4.36% 2.35X
2 SqueezeNet Off 1497 1883 + 88 866 + 58 849 + 49 2.00% 2.17X
3 AlexNet Off 1497 1172 + 34 512 + 33 509 + 33 0.59% 2.29X
4 GoogLeNet Off 1574 3088 + 187 1327 + 118 1266 + 109 4.82% 2.33X
5 SqueezeNet Off 1574 1784 + 75 819 + 48 812 + 49 0.86% 2.18X
6 AlexNet Off 1574 1143 + 35 488 + 28 480 + 27 1.67% 2.34X
7 GoogLeNet Off 1728 2839 + 161 1222 + 107 1167 + 101 4.71% 2.32X
8 SqueezeNet Off 1728 1628 + 92 744 + 55 739 + 54 0.68% 2.19X
9 AlexNet Off 1728 1004 + 31 440 + 23 435 + 21 2.33% 2.28X
10 GoogLeNet On N/A 2651 £+ 210 1120 + 152 1058 + 137 5.86% 2.37X
11 SqueezeNet On N/A 1302 + 105 598 + 63 585 + 61 2.22% 2.18X
12 AlexNet On N/A 847 + 61 370 + 30 361 + 30 2.49% 2.29X
20 —
[ol
[Propased

Execution Time (ms)
] @
= =]

w
[=]

o 5 10 15 20 25
Convolutional Layers of SqueezeNet

Fig. 10. Execution times of SqueezeNet under the default, proposed, and ideal granularity. In all experiments
the frequency is fixed at 1497MHz.

7.3.1 Model Assessment. Figure 10 shows the execution time for each convolutional layer in
SqueezeNet using the baseline, ideal, and proposed granularity. The difference in execution times
between using the finest and ideal granularity clearly shows how important thread granularity is
in the execution time of a parallel algorithm. Under the frequency of 1497MHz, algorithms with
the baseline, ideal, and proposed granularity take 1883 (ms), 849 (ms), and 866 (ms), respectively. In
addition, the difference between the proposed thread granularity and the ideal granularity is 2.00%.
We performed the same experiment for GoogLeNet and AlexNet and the results are shown in rows
1 and 3 of Table 2, respectively. For GoogLeNet, the case which uses the proposed thread granu-
larity is 4.4% slower than ideal case. For AlexNet, prediction works even better and the proposed
model is only 0.59% slower than the ideal case.

7.3.2 Impact of Thread Granularity. The fifth column of Table 2, shows the execution time of a
maximally parallel algorithm (baseline). Unlike common GPGPU practices, this approach does not
have the best performance on SoCs. For GoogLeNet under a fixed-frequency of f = 1497MHz, the
execution time of the parallel algorithm with finest thread granularity is 3267 (ms). However, when
we use the offered model to predict and select the optimal thread granularity, the execution time

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:16 M. Motamedi et al.

200

= @
S =]

Execution Time (ms)
o
=1

0 5 10 15 20 25
Convolutional Layers of SqueezeNet

Fig. 11. Execution times for the default parallel program, parallel program with granularity prediction, and

ideal parallel program. In all experiments the frequency is frozen on 1574MHz.

is 1389 (ms). Hence, using the offered model to predict the best thread granularity accelerated the
parallel algorithm for GoogLeNet by 2.35X. Similarly, SqueezeNet and AlexNet were respectively
accelerated by 2.17X and 2.29X using the offered model.

7.4 Test Frequencies

To evaluate the expandability of the proposed model, it is required to see its performance when
the frequency is not the same during the train and test for frequency scaling). For this purpose,
we used the model that was trained on frequency of 1497MHz to predict thread granularities for
layers of different CNNs under the frequency of f = 1574MHz and f = 1728MHz.

7.4.1 Model Assessment. The execution times of running different layers of SqueezeNet un-
der the frequency of 1574MHz is shown in Figure 11. For all layers of SqueezeNet except for
layer #22 the execution time of the predicted thread granularity closely follows the ideal case.
For SqueezeNet under the frequency of (f = 1574MHz) the difference between the execution time
of the ideal algorithm and the algorithm with predicted thread granularity is 0.86%. This number
is 4.8% for GoogLeNet under the same frequency.

7.4.2 Impact of Thread Granularity. In this case (fixed-frequency on f = 1574MHz), the base-
line parallel algorithm (finest thread granularity) takes 3088 (ms) for GoogLeNet and 1784 (ms) for
SqueezeNet. Using the optimized thread granularity, it is possible to speedup these algorithm by
2.33X and 2.18X, respectively.

7.5 Dynamic Frequency

Even though the proposed model works for fixed values of frequency, in practice the frequency of a
platform is not fixed. Therefore, we evaluated the performance of the proposed model when DVFS
is on. In this part, we restored DVEFS to its default mode. Therefore, each layer of a CNN may
be processed with different frequencies. To address this, before launching a convolution kernel
we query the processor to read the current working frequency and use that to select the best
thread granularity. However, the frequency may change after launching the kernel resulting in
sub-optimal performance for a portion of a layer. Regardless, the execution time of each kernel is
small compared to the rate of frequency changes, and thus, the effect on performance is limited.

7.5.1 Model Assessment. For AlexNet, the proposed granularity takes 370 (ms) for execution
and the ideal case takes 361 (ms). Thus, the predicted thread granularity is 2.49% slower. The pro-
posed thread granularity for GoogLeNet is 5.86% slower than the ideal case. Finally, the execution
time of SqueezeNet in ideal case is 585 (ms), whereas the execution time for the proposed thread
granularity is 598 (ms). Hence, the proposed thread granularity is 2.22% slower than the ideal case.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

Machine Intelligence on Resource-Constrained loT Devices 151:17

Table 3. Impact of Thread Granularity on Execution Time. Results are Reported in the Form of a + s.
Where a is the Average and s is the Standard Deviation for All Experiments. DVFS has been Active for All
Cases. Rows #1 to #3 Show the Effectiveness of the Model for a New Platform. Row #4 to #9 Demonstrate
that the Proposed Model Continues to be Effective Even When Phones are in the Normal Mode (Typical

Background Processes are Running)

Background Execution Time (ms) Diff.
CNN Name Platform Processes Baseline Proposed Ideal — withideal Speedup
1 AlexNet Nexus 6P off 512 £51 275 £ 20 270 =19 1.8% 1.86X
2 SqueezeNet Nexus 6P off 690 + 52 386 + 21 370 + 20 4.3% 1.79X
3 GoogleNet Nexus 6P off 1575+ 187 855+ 123 834 + 103 2.5% 1.84X
4 AlexNet Nexus 5 on 946 + 64 401 + 19 371 £ 17 8.0% 2.36X
5 SqueezeNet Nexus 5 on 1564 +£ 205 712 + 101 683 + 99 4.2% 2.20X
6 GoogLeNet Nexus 5 on 2744 £ 222 1151 £160 1061 + 142 8.4% 2.38X
7 AlexNet Nexus 6P on 532 £ 53 291 + 30 284 + 31 2.4% 1.83X
8 SqueezeNet Nexus 6P on 765 + 78 424 + 37 400 + 40 6.0% 1.80X
9 GoogleNet Nexus 6P on 1640 + 225 909 £ 139 890 + 120 2.1% 1.80X

Table 4. Performance Comparison Between the Proposed Solution, Cappuccino [18], and CNNDroid [14]
on AlexNet. Even Though the Proposed Solution has been Launched on an Older SoC (Snapdragon 800) It
is 1.92X Faster Compared to CNNDroid

CNNDroid [14] Cappuccino [18] Proposed
Qualcomm Qualcomm Qualcomm
SoC Snapdragon 810 Snapdragon 800 Snapdragon 800
Execution Time (ms) 709 874 370

As Table 2 shows, for different working conditions, the proposed thread granularity follows the
ideal case closely. The difference between execution time of the proposed case and the ideal case
varies from 0.59% in the best case to 5.86% in worst case. As the achieved results demonstrate, the
proposed model works effectively and yields near ideal results.

7.5.2 Impact of Thread Granularity. Use of a correct thread granularity when DVES is on can
further accelerate AlexNet by 2.29X compared to a maximally parallel algorithm. Likewise, an op-
timal choice of thread granularity using our model further accelerates GoogLeNet and SqueezeNet
by 2.37X and 2.18X, respectively.

As we observed, the decision on the number of threads we want to launch for performing a
task is not a trivial decision. Choosing the correct thread granularity can easily make a parallel
algorithm twice faster. In our experiments, choosing the correct thread granularity accelerates the
algorithm by 2.18X on average.

We repeated all experiments when phones were in the normal condition (typical background
processes were running) to indicate that the proposed approach continues to be effective in this
scenario. The results are reported in rows #4 to #9 of Table 3. We also compared the performance
of the proposed work with Cappuccino [18] and CNNDroid [14] in Table 4.

7.6 Energy Consumption

In this section we evaluate the impact of thread granularity on energy consumption.

7.6.1 Experimental Setup. In order to measure the overall energy consumption on a mobile
platform, we used the Trepn Power Profiler, a profiling application developed by Qualcomm for

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

151:18 M. Motamedi et al.

Table 5. Impact of Thread Granularity on Energy

Baseline (J) Proposed (J)
CNN Name First 1000 Second 1000 Average First 1000 Second 1000 Average Ratio
SqueezeNet 3.388 3.363 3.376 1.726 1.788 1.757 1.92X
GoogLeNet 6.123 6.145 6.134 3.401 3.446 3.424 1.79X

investigating power usage and performance on mobile devices. It can report the power consump-
tion of a specific application, as well as the overall system. The energy consumption was calculated
using the finest temporal resolution available with Trepn, (i.e., 100 (ms)).

The energy consumption using the baseline and proposed granularities for a CNN was resolved
by finding the total consumption of running a CNN 1000 times and calculating the average con-
sumption per run.* To reduce potential sources of measurement noise (non-contributory energy
consumption), we killed all unnecessary background processes, put the phone in airplane mode,
and dimmed the screen during these experiments. However, we enabled DVFS since it plays a sig-
nificant role in the overall energy consumption under a mobile devices normal working conditions.
Measurements were performed twice for repeatability (2000 runs total).

7.6.2 Impact of Thread Granularity. For our experiments, we profiled the energy consumption
of SqueezeNet and GoogLeNet on the Google Nexus 5 mobile platform using the methodology
described previously. These measurements are reported in Table 5.

For SqueezeNet and GoogLeNet respectively, using the baseline granularity consumes an av-
erage of 3.4 joules and 6.1 joules. However, the proposed granularity only uses 1.8 joules and 3.4
joules, respectively. This means that an appropriate thread granularity improves the energy con-
sumption by 1.9X for SqueezeNet and 1.8X for GoogLeNet. An optimal thread granularity improves
the execution time by efficient utilization of processors. Such a utilization keeps the processors
busier compared to the baseline case. This slightly increases the power consumption. A consid-
erable reduction in the execution time and a slight increase in the power consumption leads to a
decrease in energy consumption. For example, optimizing the granularity in SqueezeNet on Nexus
5 decreases the execution time by 2.18X and increases the power consumption by 1.14X. Hence, it
decreases the energy consumption by 1.92X compared to the baseline.

8 CONCLUSION

In this paper, we studied the effect of thread granularity on parallel execution of CNNs on mobile
SoCs. First, we explained that unlike common GPGPU methodologies, an algorithm which is max-
imally parallelized does not offer the smallest execution time. We showed that for different cases,
judicious choice of thread granularity can offer up to 2.37X speedup compared to an algorithm that
is maximally parallelized. Subsequently, we offered a learning based model that is able to select the
best thread granularity for a given convolutional layer. Finally, we showed that algorithms written
based on the thread selection policy of the offered model yield near ideal results. Our experimental
results show that using the offered model can improve the execution time of a fully parallelized
CNN by up to 2.37X and improves its energy consumption by up to 1.9X.

REFERENCES
[1] 2010. Copyright office provides exemption to DMCA. (2010). https://www.copyright.gov/1201/.

4In a previous work [17], we used Trepn to measure the energy only when the GPU was active. In this work, we measure
the total energy consumption of the application during its life cycle.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

https://www.copyright.gov/1201/.

Machine Intelligence on Resource-Constrained loT Devices 151:19

(2]

(3]

[4]
[5]
(6]
[7]

(8]

[9]

(10]

(17]
(18]

(19]

[20]

Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. 2010. A dynamically configurable
coprocessor for convolutional neural networks. In ACM SIGARCH Computer Architecture News, Vol. 38. ACM,
247-257.

Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Ligiang He, Jia Wang, Ling Li, Tianshi Chen, Zhiwei Xu, Ninghui
Sun, and others. 2014. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 609-622.

Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011. Torch7: A matlab-like environment for machine
learning. In BigLearn, NIPS Workshop.

Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. 2016. Hardware-oriented Approximation of Convolutional
Neural Networks. arXiv preprint arXiv:1604.03168 (2016).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770-778.

Po-Kuan Huang, Matin Hashemi, and Soheil Ghiasi. 2008. System-level performance estimation for application-
specific MPSoC interconnect synthesis. In Application Specific Processors, 2008. SASP 2008. Symposium on. IEEE, 95—
100.

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer. 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and 0.5 MB model size. arXiv preprint arXiv:1602.07360
(2016).

Haris Javaid, Aleksander Ignjatovic, and Sri Parameswaran. 2010. Fidelity metrics for estimation models. In Proceed-
ings of the International Conference on Computer-Aided Design. IEEE Press, 1-8.

Yanggqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and
Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia. ACM, 675-678.

N. Jouppi. 2016. Google supercharges machine learning tasks with TPU custom chip. Google Blog, May 18 (2016).
Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh
Bhatia, Nan Boden, Al Borchers, et al. 2017. In-datacenter performance analysis of a tensor processing unit. arXiv
preprint arXiv:1704.04760 (2017).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. In Advances in Neural Information Processing Systems. 1097-1105.

Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghiasi. 2016. CNNdroid: GPU-Accelerated
Execution of Trained Deep Convolutional Neural Networks on Android. In Proceedings of the 2016 ACM on Multimedia
Conference. ACM, 1201-1205.

Alberto Magni, Christophe Dubach, and Michael O’Boyle. 2014. Automatic optimization of thread-coarsening for
graphics processors. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation.
ACM, 455-466.

Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle. 2013. A large-scale cross-architecture evaluation of
thread-coarsening. In High Performance Computing, Networking, Storage and Analysis (SC), 2013 International Confer-
ence for. IEEE, 1-11.

Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. 2016. Fast and Energy-Efficient CNN Inference on IoT Devices.
arXiv preprint arXiv:1611.07151 (2016).

Mohammad Motamedi, Daniel Fong, and Soheil Ghiasi. 2017. Cappuccino: Efficient Inference Software Synthesis for
Mobile System-on-Chips. arXiv preprint arXiv:1707.02647 (2017).

Mohammad Motamedi, Philipp Gysel, Venkatesh Akella, and Soheil Ghiasi. 2016. Design space exploration of fpga-
based deep convolutional neural networks. In Design Automation Conference (ASP-DAC), 2016 21st Asia and South
Pacific. IEEE, 575-580.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpa-
thy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252. https://doi.org/10.1007/
511263-015-0816-y.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1-9.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing fpga-based acceler-
ator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. ACM, 161-170.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 5s, Article 151. Publication date: September 2017.

https://doi.org/10.1007/s11263-015-0816-y

